11.如圖四棱椎P-ABCD中,四邊形ABCD是矩形,平面PAD⊥平面ABCD,其中M,N分別是PD,BC的中點
(Ⅰ)求證:BA⊥平面PAD
(Ⅱ)求證:MN∥平面PAB.

分析 (Ⅰ)推導(dǎo)出BA⊥AD,由此利用平面PAD⊥平面ABCD,能證明BA⊥平面PAD.
(Ⅱ)取PA中點E,連結(jié)ME,BE,推導(dǎo)出四邊形ABCD是矩形,從而四邊形BNME是平行四邊形,進(jìn)而MN∥BE,由此能證明MN∥平面PAB.

解答 證明:(Ⅰ)∵四邊形ABCD是矩形,∴BA⊥AD,
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BA⊥平面PAD.
解:(Ⅱ)取PA中點E,連結(jié)ME,BE,
∵M(jìn),E分別是PA,PD中點,
∴在△PAD中,EM$\underset{∥}{=}$$\frac{1}{2}$AD,
又N是BC中點,四邊形ABCD是矩形,
∴BN$\underset{∥}{=}$$\frac{1}{2}$AD,∴BN$\underset{∥}{=}$EM,
∴四邊形BNME是平行四邊形,
∴MN∥BE,
又BE?平面PAB,MN?平面PAB,
∴MN∥平面PAB.

點評 本題考查線面垂直的證明,考查線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖1是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績的莖葉圖,第1次到第第14次的考試成績依次記為A1,A2,…A14,如圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖,那么算法流程圖輸出的結(jié)果是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,∠DAB=60°,AB=2AD=2,PD⊥平面ABCD
(1)求證:AD⊥PB;
(2)若BD與平面PBC的所成角為30°,求三棱錐P-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≤2}\\{y-z≤2}\\{y≥1}\end{array}\right.$,則(x+2)2+(y-3)2的最大值和最小值之和為( 。
A.$\frac{19}{2}$B.$\frac{35}{2}$C.14D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有下列關(guān)系:①學(xué)生上學(xué)的年限與知識掌握量的關(guān)系;②函數(shù)圖象上的點與該點的坐標(biāo)之間的關(guān)系;③葡萄的產(chǎn)量與氣候之間的關(guān)系;④森林中的同一種樹木,其橫斷面直徑與高度之間的關(guān)系.其中有相關(guān)關(guān)系的是( 。
A.①②③B.①②C.②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.$\overrightarrow a=(\sqrt{3}sin2x,cos2x),\overrightarrow b=(cos2x,-cos2x),f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$.
(1)若$x∈(\frac{7}{24}π,\frac{5}{12}π)$時,$\overrightarrow a•\overrightarrow b+\frac{1}{2}=-\frac{3}{5}$,求cos4x的值;
(2)將$f(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$的圖象向左移$\frac{π}{8}$,再將各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得y=g(x),若關(guān)于g(x)+m=0在區(qū)間$[0,\frac{π}{2}]$上的有且只有一個實數(shù)解,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.位于直角坐標(biāo)原點的質(zhì)點P按一下規(guī)則移動:①每次移動一個單位②向左移動的概率為$\frac{1}{4}$,向右移動的概率為$\frac{3}{4}$.移動5次后落在點(-1,0)的概率為(  )
A.C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2B.C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3C.C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2D.C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解甲、乙兩校高三年級學(xué)生某次期末聯(lián)考地理成績情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若乙校高三年級每位學(xué)生被抽取的概率為0.15,求乙校高三年級學(xué)生總?cè)藬?shù);
(2)根據(jù)莖葉圖,分析甲、乙兩校高三年級學(xué)生在這次聯(lián)考中哪個學(xué)校地理成績較好?(不要求計算,要求寫出理由);
(3)從樣本中甲、乙兩校高三年級學(xué)生地理成績不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.底面邊長和側(cè)棱長均為2的正四棱錐的體積為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案