A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是同一函數(shù).
解答 解:對于A,函數(shù)f(x)=|x|(x∈R),與函數(shù)g(x)=$\sqrt{{x}^{2}}$=|x|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù);
對于B,函數(shù)f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),與函數(shù)g(x)=${(\sqrt{x})}^{2}$=x(x≥0)的定義域不同,不是同一函數(shù);
對于C,函數(shù)f(x)=$\frac{{x}^{2}-1}{x-1}$=x+1(x≠1),與函數(shù)g(x)=x+1(x∈R)的定義域不同,不是同一函數(shù);
對于D,函數(shù)f(x)=$\sqrt{x+1}$(x≥-1),與函數(shù)g(x)=$\sqrt{{x}^{2}-1}$(x≤-1或x≥1)的定義域不同,對應(yīng)關(guān)系也不同,不是同一函數(shù).
故選:A.
點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{63}{65}$ | B. | $\frac{33}{65}$ | C. | $\frac{16}{65}$ | D. | $-\frac{33}{65}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在研究身高和體重的相關(guān)性中,R2=0.64,表明身高解釋了$\begin{array}{l}64%\end{array}$的體重變化 | |
B. | 若a,b,c∈R,有(ab)•c=a•(bc),類比此結(jié)論,若向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,有($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$), | |
C. | 在吸煙與患肺癌是否相關(guān)的判斷中,由獨立性檢驗可知,在犯錯誤的概率不超過0.01的前提下,認為吸煙與患肺癌有關(guān)系,那么在100個吸煙的人中,必有99個人患肺癌 | |
D. | 若a,b∈R,則a-b>0⇒a>b,類比推出若a,b∈C,則a-b>0⇒a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12或-48 | B. | 32或-8 | C. | -32或8 | D. | -12或48 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com