2.定義:函數(shù)f(x)在閉區(qū)間[a,b]上的最大值與最小值之差為函數(shù)f(x)的極差,若定義在區(qū)間[-2b,3b-1]上的函數(shù)f(x)=x3-ax2-(b+2)x是奇函數(shù),則a+b=1,函數(shù)f(x)的極差為4.

分析 由定義在區(qū)間[-2b,3b-1]上的函數(shù)f(x)=x3-ax2-(b+2)x是奇函數(shù),列出方程組,能求出a=0,b=1,從而a+b=1,f(x)=x3-3x,由此利用導(dǎo)數(shù)的性質(zhì)能求出函數(shù)f(x)的極差.

解答 解:∵定義在區(qū)間[-2b,3b-1]上的函數(shù)f(x)=x3-ax2-(b+2)x是奇函數(shù),
∴$\left\{\begin{array}{l}{-2b+3b-1=0}\\{-a=0}\end{array}\right.$,解得a=0,b=1,∴a+b=1,
∴f(x)=x3-3x,區(qū)間[-2b,3b-1]即為[-2,2].
f′(x)=3x2-3,由f′(x)=0,得x=±1,
∵f(-2)=(-2)3-3×(-2)=-2,
f(-1)=(-1)3-3×(-1)=2,
f(1)=13-3×1=-2,
f(2)=23-3×2=2,
∴f(x)max=2,f(x)min=-2,
∴函數(shù)f(x)的極差為:2-(-2)=4.
故答案為:1,4.

點(diǎn)評(píng) 本題考查函數(shù)性質(zhì)、函數(shù)極差、導(dǎo)數(shù)、函數(shù)最大值及最小值等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-2|x+1|的最大值為k.
(1)求k的值;
(2)若$\frac{1}{m}+\frac{1}{2n}=k({m>0,n>0})$,求證:m+2n≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,則數(shù)列{log2an}的前10項(xiàng)和等于( 。
A.1023B.55C.45D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a$與$\overrightarrow b$夾角為135°,則$\overrightarrow a•(\overrightarrow a+\vec b)$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在三棱錐A-BCD中,AB⊥平面BCD,∠BCD=90°,E、F分別是AC、AD上的點(diǎn),且$\frac{AE}{AC}=\frac{AF}{AD}$.
(1)求證:平面BEF⊥平面ABC;
(2)若平面BEF⊥平面ACD,求證:BE⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{2-i}{2+i}$-$\frac{2+i}{2-i}$,則z=( 。
A.$\frac{6}{5}$iB.$\frac{8i}{5}$C.-$\frac{8i}{5}$D.-$\frac{6}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知角φ的終邊在射線$y=\sqrt{3}x(x≤0)$上,函數(shù)f(x)=cos(ωx+φ)(ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離等于$\frac{π}{3}$,則$f(\frac{π}{6})$=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ax2-a-lnx.
(Ⅰ)試討論f(x)的單調(diào)性;
(Ⅱ)若f(x)+$\frac{e}{{e}^{x}}$-$\frac{1}{x}$>0在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線$\left\{\begin{array}{l}x=1+tcosα\\ y=-2+tsinα\end{array}$(t為參數(shù),0≤a<π)必過(guò)點(diǎn)(  )
A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案