12.已知點(diǎn)A(2,3),B(4,1),△ABC是以AB為底邊的等腰三角形,點(diǎn)C在直線l:x-2y+2=0上.
(1)求點(diǎn)C的坐標(biāo)及S△ABC;
(2)若直線l'過(guò)點(diǎn)C且與x軸、y軸正半軸分別交于P、Q兩點(diǎn),則:
①求S△POQ的最小值及此時(shí)l'的方程;
②求|PC|•|QC|的最小值及此時(shí)l'的方程.

分析 (1)利用中點(diǎn)坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式即可得出;聯(lián)立直線方程可得交點(diǎn),利用直角三角形的面積計(jì)算公式即可得出.
(2)①設(shè)l'的方程為$\frac{x}{a}$+$\frac{y}$=1(a>0,b>0),則$\frac{4}{a}+\frac{3}$=1≥2$\sqrt{\frac{12}{ab}}$,即可求S△POQ的最小值及此時(shí)l'的方程;
②設(shè)直線的傾斜角為π-α,則|PC|•|QC|=$\frac{3}{sinα}•\frac{4}{cosα}$=$\frac{24}{sin2α}$,即可求|PC|•|QC|的最小值及此時(shí)l'的方程.

解答 解:(1)由題意可知,E為AB的中點(diǎn),∴E(3,2),
∵kAB=-1,∴kCE=1,
∴CE:y-2=x-3,即x-y-1=0.
由$\left\{\begin{array}{l}{x-2y+2=0}\\{x-y-1=0}\end{array}\right.$得C(4,3),
∴|AC|=|BC|=2,AC⊥BC,
∴S△ABC=$\frac{1}{2}×2×2$=2.
(2)①設(shè)l'的方程為$\frac{x}{a}$+$\frac{y}$=1(a>0,b>0),則$\frac{4}{a}+\frac{3}$=1≥2$\sqrt{\frac{12}{ab}}$,
∴ab≥48,∴S△POQ≥24,即S△POQ的最小值為24,此時(shí)a=8,b=6,
∴l(xiāng)'的方程為$\frac{x}{8}+\frac{y}{6}$=1;
②設(shè)直線的傾斜角為π-α,則|PC|•|QC|=$\frac{3}{sinα}•\frac{4}{cosα}$=$\frac{24}{sin2α}$,
當(dāng)且僅當(dāng)α=45°時(shí),|PC|•|QC|的最小值為24,此時(shí)l'的方程為x+y-7=0.

點(diǎn)評(píng) 本題考查了中點(diǎn)坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式、直線的交點(diǎn)、直角三角形的面積計(jì)算公式,考查直線方程,考查了計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.從甲、乙、丙、丁、戊5名同學(xué)中任選4名參加接力賽,其中,甲不跑第一棒,乙、丙不跑相鄰兩棒,則不同的選排總數(shù)為( 。
A.48B.56C.60D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:若0<x<$\frac{π}{2}$,則sin>x:命題q:若0<x<$\frac{π}{2}$,則tanx>x.在命題①p∧q;②p∨q;③p∨(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.各項(xiàng)均為正數(shù)的等比數(shù)列{an},其前n項(xiàng)和為Sn.若a2-a5=-78,S3=13,則數(shù)列{an}的通項(xiàng)公式an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$.
(1)求x+2y最大值;
(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求$\frac{1}{a}$+$\frac{2}{3b}$的最小值;
(3)若目標(biāo)函數(shù)z=kx+y最小值的最優(yōu)解有無(wú)數(shù)個(gè),求值k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=2cos(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最大值與最小值之和為(  )
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.定義集合運(yùn)算:A?B={z|z=xy,x∈A,y∈B},設(shè)A={1,2},B={2,4},則集合A?B的所有元素之和為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax(x≥0)的圖象經(jīng)過(guò)點(diǎn)(2,$\frac{1}{4}$),其中a>0且a≠1.
(1)求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.A={2,a},B={2,a2-2},如果A=B,則a=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案