【題目】某村共有100戶(hù)農(nóng)民,且都從事蔬菜種植,平均每戶(hù)的年收入為2萬(wàn)元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動(dòng)員部分農(nóng)民從事蔬菜加工.據(jù)估計(jì),若能動(dòng)員戶(hù)農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶(hù)的年收入比上一年提高,而從事蔬菜加工的農(nóng)民平均每戶(hù)的年收入為萬(wàn)元.
(1)在動(dòng)員戶(hù)農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動(dòng)員前100戶(hù)農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這100戶(hù)農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求的最大值.
【答案】(1);(2)9.
【解析】
(1)根據(jù)題意,表示出動(dòng)員戶(hù)農(nóng)民從事蔬菜加工后農(nóng)民的總年收入,動(dòng)員前農(nóng)民的總年收入,再解不等式.
(2)轉(zhuǎn)化成恒成立問(wèn)題,再分離變量,轉(zhuǎn)化成函數(shù)的最值問(wèn)題.
解:(1)動(dòng)員戶(hù)農(nóng)民從事蔬菜加工后,農(nóng)民的總年收入為,
由題得.
(2)由題恒成立,其中,
即恒成立,又因?yàn)?/span>,
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)是的中點(diǎn).
(1)求證:平面;
(2)在線(xiàn)段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,,,PA=PD=CD=BC=1.
(1)求證:平面平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),分別是橢圓右頂點(diǎn)與上頂點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,且點(diǎn)是圓的圓心,動(dòng)直線(xiàn)與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)在線(xiàn)段上,,且當(dāng)取最小值時(shí)直線(xiàn)與圓相切,求的值;
(3)若直線(xiàn)與圓分別交于,兩點(diǎn),點(diǎn)在線(xiàn)段上,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且存在,使得,設(shè),,,.
(Ⅰ)證明單調(diào)遞增;
(Ⅱ)求證:;
(Ⅲ)記,其前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代的四書(shū)是指:《大學(xué)》、《中庸》、《論語(yǔ)》、《孟子》,甲、乙、丙、丁名同學(xué)從中各選一書(shū)進(jìn)行研讀,已知四人選取的書(shū)恰好互不相同,且甲沒(méi)有選《中庸》,乙和丙都沒(méi)有選《論語(yǔ)》,則名同學(xué)所有可能的選擇有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)y2=4x焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于P,Q兩點(diǎn),M為線(xiàn)段PF的中點(diǎn),連接OM,則△OMQ的最小面積為( )
A.1B.C.2D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若,是方程的兩個(gè)不同的實(shí)數(shù)根,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)討論函數(shù)在上的單調(diào)性;
(Ⅱ)判斷當(dāng)時(shí),與的圖象公切線(xiàn)的條數(shù),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com