8.設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,若$\overrightarrow{a}$=(3,-1),$\overrightarrow$-$\overrightarrow{a}$=(-1,1),則cosθ=$\frac{3\sqrt{10}}{10}$.

分析 根據(jù)向量的坐標(biāo)運(yùn)算和向量的夾角公式計(jì)即可.

解答 解:∵$\overrightarrow{a}$=(3,-1),$\overrightarrow$-$\overrightarrow{a}$=(-1,1),
∴$\overrightarrow$=(2,0),
∴|$\overrightarrow{a}$|=$\sqrt{10}$,|$\overrightarrow$|=2,$\overrightarrow{a}•\overrightarrow$=6,
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a|}•|\overrightarrow|}$=$\frac{6}{2\sqrt{10}}$=$\frac{3\sqrt{10}}{10}$,
故答案為:$\frac{3\sqrt{10}}{10}$.

點(diǎn)評(píng) 考查向量坐標(biāo)的數(shù)乘和減法運(yùn)算,向量坐標(biāo)的數(shù)量積的運(yùn)算,以及向量夾角的余弦公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的中心在坐標(biāo)原點(diǎn)O,過C的右頂點(diǎn)和右焦點(diǎn)分別作垂直于x軸的直線,交C的漸近線于A,B和M,N,若△OAB與△OMN的面積之比為1:4,則C的漸近線方程為( 。
A.y=±xB.$y=±\sqrt{3}x$C.y=±2xD.y=±3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=$\sqrt{lg(5-{x}^{2})}$的定義域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$\overrightarrow b$在$\overrightarrow a$方向上的投影是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{cosB}$=-$\frac{3cosC}{c}$,則角A的最大值是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等差數(shù)列{an}中,a2=5,a1+a3+a4=19.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}前n項(xiàng)和為Sn,且Sn+$\frac{{a}_{n}-1}{{2}^{n}}$=λ(λ為常數(shù)),令cn=bn+1(n∈N*).求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示,給出下列條件:
①∠B=∠ACD;
②∠ADC=∠ACB;
③$\frac{AC}{CD}$=$\frac{AB}{BC}$;
④AC2=AD•AB.
其中能夠單獨(dú)判定△ABC∽△ACD的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.現(xiàn)有6名高職學(xué)生到某公司A、B、C、D、E五個(gè)崗位實(shí)習(xí),每個(gè)崗位至少有一名學(xué)生,則學(xué)生小王和小李恰好被安排在崗位A實(shí)習(xí)的概率是$\frac{1}{75}$(結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),其短軸為2,離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的右焦點(diǎn)為F,過點(diǎn)G(2,0)作斜率不為0的直線交橢圓E于M,N兩點(diǎn),設(shè)直線FM和FN的斜率為k1,k2,試判斷k1+k2是否為定值,若是定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案