15.一個幾何體的三視圖如圖所示.已知這個幾何體的體積為8,則h=( 。
A.1B.2C.3D.6

分析 由已知中的三視圖可得該幾何體是一個以俯視圖為底面的四棱錐,代入棱錐體積公式,可構(gòu)造關(guān)于h的方程,解得答案.

解答 解:由已知中的三視圖可得該幾何體是一個以俯視圖為底面的四棱錐,
其底面是一個長,寬分別為3,4的矩形,
故底面面積S=3×4=12,
高為h,
故這個幾何體的體積為V=$\frac{1}{3}$×12×h=8,
解得:h=2,
故選:B.

點評 本題考查的知識點是棱錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題:“?x0>0,使2${\;}^{{x}_{0}}$>10”,這個命題的否定是(  )
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-3y-1≤0\\ x≤1\end{array}\right.$,則z=3x-y的最大值為( 。
A.-5B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項活動,則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+alnx-x(a≠0),g(x)=x2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的a∈(1,+∞),總存在x1,x2∈[1,a],使得f(x1)-f(x2)>g(x1)-g(x2)+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2016年微信用戶數(shù)量統(tǒng)計顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18-36歲之間.為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學(xué)生中隨機抽取100位同學(xué)進行了抽樣調(diào)查,結(jié)果如下:
微信群數(shù)量頻數(shù)頻率
0至5個00
6至10個300.3
11至15個300.3
16至20個ac
20個以上5b
合計1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學(xué)中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過15個的概率;
(Ⅲ)以這100個人的樣本數(shù)據(jù)估計北京市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學(xué)生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“?x>0,x2-2x+1<0”的否定是( 。
A.?x<0,x2-2x+1≥0B.?x≤0,x2-2x+1>0C.?x>0,x2-2x+1≥0D.?x>0,x2-2x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={1,2,3,4},B={0,2,4,6},則A∩B等于(  )
A.{0,1,2,3,4,6}B.{1,3}C.{2,4}D.{0,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若數(shù)列{an}的前n項和記為Sn,并滿足${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,則S7=( 。
A.30B.54C.100D.112

查看答案和解析>>

同步練習(xí)冊答案