當(dāng)x=8時,不等式loga(x2-x-6)>loga(4x+8)(a>0,a≠1)成立,則此不等式的解集為________.
{x|7<x}
分析:由已知中當(dāng)x=8時,不等式loga(x2-x-6)>loga(4x+8)(a>0且a≠1)成立,根據(jù)函數(shù)單調(diào)性與底數(shù)的關(guān)系,可以判斷出a的范圍,進而結(jié)合對數(shù)式中真數(shù)必須大于0,及對數(shù)函數(shù)的單調(diào)性,可將原不等式化為一個關(guān)于x的整式不等式,進而解得答案.
解答:∵當(dāng)x=8時,x2-x-6=50>4x+8=40
而此時不等式loga(x2-x-6)>loga(4x+8)成立
故函數(shù)y=logax為增函數(shù),則a>1
若loga(x2-x-6)>loga(4x+8)
則解得x2-x-6>4x+8>0,解得x>7.
故不等式loga(x2-x-6)>loga(4x+8)的解集為{x|7<x,x∈R}
故答案為:{x|7<x}
點評:本題考查的知識點是對數(shù)函數(shù)圖象與性質(zhì),其中根據(jù)對數(shù)式中真數(shù)必須大于0,及對數(shù)函數(shù)的單調(diào)性,將原不等式化為一個關(guān)于x的整式不等式組,是解答本題的關(guān)鍵,解答中易忽略真數(shù)大于0,而錯解.