10.甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙獲勝的概率為$\frac{1}{3}$,則下列說法正確的是(  )
A.甲獲勝的概率是$\frac{1}{6}$B.甲不輸?shù)母怕适?\frac{1}{2}$
C.乙輸了的概率是$\frac{2}{3}$D.乙不輸?shù)母怕适?\frac{1}{2}$

分析 由已知條件分別求出甲獲勝、甲不輸、乙輸和乙不輸?shù)母怕,由此能得到正確選項同.

解答 解:∵甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙獲勝的概率為$\frac{1}{3}$,
∴甲獲勝的概率是:1-$\frac{1}{2}-\frac{1}{3}$=$\frac{1}{6}$,故A正確;
甲不輸?shù)母怕适牵?-$\frac{1}{3}$=$\frac{2}{3}$,故B不正確;
乙輸了的概率是:1-$\frac{1}{3}-\frac{1}{2}$=$\frac{1}{6}$,故C不正確;
乙不輸?shù)母怕适牵?\frac{1}{2}+\frac{1}{3}$=$\frac{5}{6}$.故D不正確.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意互斥事件概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.
(1)當$a=\frac{1}{2}$時,求(CuB)∩A.
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若2a=6,b=log23,則a-b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:?x>0,x2-1≥2lnx,則¬p為( 。
A.?x≤0,x2-1<2lnxB.?x>0,x2-1<2lnxC.?x>0,x2-1<2lnxD.?x≤0,x2-1<2lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知平面上三個向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,其中$\overrightarrow{a}$=(1,2).
(1)若|$\overrightarrow{c}$|=3$\sqrt{5}$,且$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$的坐標;
(2)若|$\overrightarrow$|=3$\sqrt{5}$,且(4$\overrightarrow{a}$-$\overrightarrow$)⊥(2$\overrightarrow{a}$+$\overrightarrow$),求$\overrightarrow{a}$與$\overrightarrow$夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是(  )
A.“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“
D.“△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.補充完成化簡$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π+α)sin(-π-α)sin(\frac{9π}{2}+α)}$的過程.
解:∵sin(2π-α)=-sinα,cos(π+α)=-cosα,
cos ($\frac{π}{2}$+α)=-sinα,cos ($\frac{11}{2}$-α)=-sinα,
cos(π-α)=-cosα,sin(3π+α)=-sinα,
sin(-π-α)=sinα,sin ($\frac{9}{2}$+α)=cosα,
∴原式=tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是巴蜀中學(xué)“高2017級躍動青春自編操”比賽上,七位評委為某班打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的眾數(shù)和中位數(shù)分別為( 。
A.84,84B.84,85C.85,84D.85,85

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖(1)有面積關(guān)系:$\frac{{S}_{△P{A}^{′}{B}^{′}}}{{S}_{△PAB}}$=$\frac{PA′•PB′}{PA•PB}$,則圖(2)有體積關(guān)系:$\frac{{V}_{P-{A}^{′}{B}^{′}{C}^{′}}}{{V}_{P-ABC}}$=$\frac{PA′•PB′•PC′}{PA•PB•PC}$.

查看答案和解析>>

同步練習冊答案