已知圓C的方程:x2+y2-2x-4y+m=0.
(Ⅰ)求m的取值范圍;
(Ⅱ)當(dāng)圓C與圓D:(x+3)2+(y+1)2=16相外切時(shí),求直線l:x+2y-4=0被圓C所截得的弦MN的長(zhǎng).
考點(diǎn):直線與圓相交的性質(zhì),圓的一般方程
專題:直線與圓
分析:(Ⅰ)根據(jù)圓的一般方程表示圓的條件即可求m的取值范圍;
(Ⅱ)根據(jù)圓與圓相切的等價(jià)條件求出m的值,結(jié)合直線的弦長(zhǎng)公式進(jìn)行求解即可.
解答: 解:(Ⅰ)圓C的方程可化為(x-1)2+(y-2)2=5-m …(2分)
令5-m>0,得m<5.…(4分)
(Ⅱ)圓C:(x-1)2+(y-2)2=5-m,圓心C(1,2),半徑r=
5-m

圓D:(x+3)2+(y+1)2=16,圓心D(-3,-1),半徑R=4…(6分)
∵圓C與圓D相外切
(1+3)2+(2+1)2
=
5-m
+4
,解得m=4 …(8分)
圓心C(1,2)到直線l:x+2y-4=0的距離為d=
|1+4-4|
1+4
=
5
5
 …(10分)
∴|MN|=2
1-
1
5
=
4
5
5
         …(12分)
點(diǎn)評(píng):本題主要考查圓與圓的位置關(guān)系的應(yīng)用以及直線和圓相交的弦長(zhǎng)公式的計(jì)算,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
1
2
sin2x是( 。
A、最小正周期為2π的偶函數(shù)
B、最小正周期為2π的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)
1
-1+i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三角形ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=3,E,F(xiàn)分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(1)求證:直線l∥BC;
(2)若直線l上一點(diǎn)Q滿足BQ∥AC,求平面PAC與平面EQB的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-2x+4my+4m2=0,圓C1:x2+y2=25,以及直線l:3x-4y-15=0.
(1)求圓C1:x2+y2=25被直線l截得的弦長(zhǎng);
(2)當(dāng)m為何值時(shí),圓C與圓C1的公共弦平行于直線l;
(3)是否存在m,使得圓C被直線l所截的弦AB中點(diǎn)到點(diǎn)P(2,0)距離等于弦AB長(zhǎng)度的一半?若存在,求圓C的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=kx-2,M(-2,0),N(-1,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)Q滿足
|QM|
|QN|
=
2
,動(dòng)點(diǎn)Q的軌跡為曲線C
(1)求曲線C的方程;
(2)若直線l與圓O:x2+y2=2交于不同的兩點(diǎn)A,B,當(dāng)∠AOB=
π
2
時(shí),求k的值;
(3)若k=
1
2
,P是直線l上的動(dòng)點(diǎn),過(guò)點(diǎn)P作曲線C的兩條切線PC、PD,切點(diǎn)為C、D,探究:直線CD是否過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)菱形的兩條對(duì)角線分別在直線l1:直線(a+1)x+y-a=0和直線l2:ax+2(a+1)y+1=0上,則對(duì)角線的交點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,向量
m
=(a,b+c),
n
=(1,cosC+
3
sinC),且
m
n

(1)求角A;
(2)若3bc=16-a2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x)的定義域?yàn)镈,如果存在區(qū)間[m,n]⊆D同時(shí)滿足下列條件:①f(x)在[m,n]是單調(diào)的;②當(dāng)定義域?yàn)閇m,n]時(shí),f(x)的值域也是[m,n],則稱區(qū)間[m,n]是該函數(shù)的“H區(qū)間”.若函數(shù)f(x)=
alnx-x(x>0)
-x
-a(x≤0)
存在“H區(qū)間”,則正數(shù)a的取值范圍是( 。
A、(
1
4
,1]∪(2e,e2]
B、(
3
4
,1]∪(2e,e2]
C、(
1
4
,3]∪(e,e2]
D、(
3
4
,2]∪(e,e2]

查看答案和解析>>

同步練習(xí)冊(cè)答案