17.已知復(fù)數(shù)z=$\frac{1+i}{1-i}$,則$\overline{z}$=(  )
A.-2iB.-iC.2iD.i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,則$\overline{z}$可求.

解答 解:z=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$,
則$\overline{z}$=-i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐中P-ABCD中,底面ABCD是菱形,且∠DAB=60°,PA=PD,M為CD的中點(diǎn),平面PAD⊥平面ABCD.
(1)求證:BD⊥PM;
(2)若∠APD=90°,PA=$\sqrt{2}$,求點(diǎn)A到平面PBM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a為實(shí)數(shù),設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-{2}^{a},x<2}\\{lo{g}_{2}(x-2),x≥2}\end{array}\right.$,則f(2a+2)的值為( 。
A.2aB.aC.2D.a或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于( 。
A.直線x=1對(duì)稱B.直線x=-1對(duì)稱C.點(diǎn)(1,0)對(duì)稱D.點(diǎn)(-1,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,交A、B、C所對(duì)的邊分別為a,b,c,且c=acosB+bsinA
(Ⅰ)求A;
(Ⅱ)若a=2$\sqrt{2}$,求△ABC的面積的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某長(zhǎng)方體的三視圖如圖,長(zhǎng)度為$\sqrt{10}$的體對(duì)角線在主視圖中的投影長(zhǎng)度為$\sqrt{6}$,在左視圖中的投影長(zhǎng)度為$\sqrt{5}$,則該長(zhǎng)方體的體積為( 。
A.3$\sqrt{5}$+2B.2$\sqrt{5}$C.6$\sqrt{5}$+4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,四邊形AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥BC;
(Ⅱ)求平面CA1B1與平面A1B1C1的夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{2lnx}$,g(x)=-$\frac{{x}^{2}}{2}$+alnx+a(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于?x1,x2∈(1,+∞),總有f(x1)≥g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若函數(shù)g(x+2)=2x2-3x,則g(3)的值是( 。
A.35B.9C.-1D.-13

查看答案和解析>>

同步練習(xí)冊(cè)答案