2.某長方體的三視圖如圖,長度為$\sqrt{10}$的體對角線在主視圖中的投影長度為$\sqrt{6}$,在左視圖中的投影長度為$\sqrt{5}$,則該長方體的體積為( 。
A.3$\sqrt{5}$+2B.2$\sqrt{5}$C.6$\sqrt{5}$+4D.10

分析 設(shè)長方體的長,寬,高分別為a,b,c.由題意可得:a2+b2+c2=10,a2+c2=6,b2+c2=5,聯(lián)立解出即可得出.

解答 解:設(shè)長方體的長,寬,高分別為a,b,c.
由題意可得:a2+b2+c2=10,a2+c2=6,b2+c2=5,
解得c=1,b=2,a=$\sqrt{5}$.
∴該長方體的體積V=abc=2$\sqrt{5}$.
故選:B.

點評 本題考查長方體的三視圖及其體積計算公式,了考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線mx2+y2=1(m∈R)的離心率為$\sqrt{2}$,則m的值為( 。
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=3sin(3x+φ),x∈[0,π],則y=f(x)的圖象與直線y=2的交點個數(shù)最多有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{3}$=1(a>0)的離心率為2,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=$\frac{1+i}{1-i}$,則$\overline{z}$=( 。
A.-2iB.-iC.2iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=x+$\frac{9}{x}$在區(qū)間[1,4]上的最小值為n,則二項式(x-$\frac{1}{x}$)n展開式中x2的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)以橢圓C2:$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)的焦點F1,F(xiàn)2為頂點,且以橢圓C2的右頂點A為一個焦點,它的一條漸近線與橢圓C2交于P,Q,若$\overrightarrow{AP}•\overrightarrow{PQ}$=0,則雙曲線C1的離心率e滿足(  )
A.e2=$\frac{\sqrt{2}+1}{2}$B.e2=$\frac{\sqrt{3}+1}{2}$C.e2=$\frac{3}{2}$D.e2=$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3-$\frac{1}{2}$x2-2x+5.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[-1,2]時,f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列隨機事件模型屬于古典概型的有幾個(  )
(1)在平面直角坐標(biāo)系內(nèi),從橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的所有點中任取一點
(2)某射手射擊一次,可能命中0環(huán)、1環(huán)、2環(huán)…,10環(huán).
(3)一個小組有男生5人,女生3人,從中任選1人進行活動匯報.
(4)一只使用中的燈泡的壽命長短.
(5)拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案