【題目】已知函數(shù)f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)﹣g(x),h(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),k∈N,求k的值.

【答案】
(1)解:∵f(x)=xlnx,x>0,

∴f′(x)=1+lnx,

令f′(x)=1+lnx=0,解得x= ,

當(dāng)x> 時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增,

當(dāng)0<x< 時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,

∴當(dāng)x= ,且f( )=﹣ ,

∵f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值,

∴x0= ,

∵g(x)=x+ (x>0),

∴g′(x)=1﹣ ,

∴g′( )=1﹣ =0,

解得a=e2,

∴g(x0)=g( )= +

∴f(x0)﹣g(x0)=﹣ + + =


(2)解:函數(shù)h(x)=f(x)﹣g(x)=xlnx﹣x﹣ ,

∴h′(x)=1+lnx﹣1+ =lnx﹣ ,

設(shè)φ(x)=lnx﹣ ,

∴φ′(x)= + >0,

∴h′(x)在(0,+∞)上單調(diào)遞增,

∴h′(1)h(e)<0,

∴h′(x)在(1,e)上存在唯一的零點(diǎn),

∵h(yuǎn)(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),

∴k=1


【解析】(1)先利用導(dǎo)數(shù)求出f(x)的極值點(diǎn)和極值,繼而求出a的值,再求出g(x)的極值,問題得以解決,(2)先求導(dǎo)得到h′(x)=lnx﹣ ,再根據(jù)函數(shù)零點(diǎn)存在定理即可判斷零點(diǎn)所在的區(qū)間.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù),需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A是拋物線y2=4x上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑的圓C交直線x=1于M,N兩點(diǎn).直線l與AB平行,且直線l交拋物線于P,Q兩點(diǎn).
(Ⅰ)求線段MN的長(zhǎng);
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長(zhǎng)與|MN|相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)﹣ax﹣lna.
(1)討論f(x)的單調(diào)性;
(2)若h(x)=ax﹣f(x),當(dāng)h(x)>0恒成立時(shí),求a的取值范圍;
(3)若存在 ,x2>0,使得f(x1)=f(x2)=0,判斷x1+x2與0的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當(dāng)天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當(dāng)天工資. (Ⅰ)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:

雕刻量n

210

230

250

270

300

頻數(shù)

1

2

3

3

1

以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┰诋(dāng)天的收入不低于276元的條件下,求當(dāng)天雕刻量不低于270個(gè)的概率;
(ⅱ)若X表示雕刻師當(dāng)天的收入(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)(x﹣b)(x﹣c)(其中a>1,b>1),x=0是f(x)的一個(gè)零點(diǎn),曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則a+b的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)作出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時(shí),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】斐波那契數(shù)列{an}滿足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前n項(xiàng)所占的格子的面積之和為Sn , 每段螺旋線與其所在的正方形所圍成的扇形面積為cn , 則下列結(jié)論錯(cuò)誤的是(
A.
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,AD⊥FC.點(diǎn)M在棱FC上,平面ADM與棱FB交于點(diǎn)N.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面ADMN⊥平面CDEF;
(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女子善織,日益功,疾,初日織五尺,今一月織九匹三丈(1匹=40尺,一丈=10尺),問日益幾何?”其意思為:“有一女子擅長(zhǎng)織布,每天比前一天更加用功,織布的速度也越來(lái)越快,從第二天起,每天比前一天多織相同量的布,第一天織5尺,一月織了九匹三丈,問每天增加多少尺布?”若一個(gè)月按31天算,記該女子一個(gè)月中的第n天所織布的尺數(shù)為an , 則 的值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案