函數(shù)F(x)=(x2+
1
x
)2013
+(x+
1
x2
)2013
在區(qū)間(0,
3
2
]
上的最小值為
 
考點(diǎn):基本不等式
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:用兩次基本不等式求最小值.
解答: 解:F(x)=(x2+
1
x
)2013
+(x+
1
x2
)2013
≥2
(x2+
1
x
)2013(x+
1
x2
)2013

=2
(2+x3+
1
x3
)2013
≥2
(2+2)2013
=22014
(當(dāng)且僅當(dāng)(x2+
1
x
)2013
=(x+
1
x2
)2013
,且x3=
1
x3
,即x=1時(shí),等號(hào)成立).
故答案為:22014
點(diǎn)評(píng):本題考查了基本不等式的應(yīng)用,注意驗(yàn)證不等式等號(hào)成立的條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)求三棱錐D-AEC的體積;
(3)求直線DE與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題正確的個(gè)數(shù)是( 。
①若
a
b
=0,則
a
=
0
b
=
0
;
②(
a
b
)•
c
=
a
•(
b
c
);
③若
a
b
=
b
c
b
0
),則
a
=
c
;
a
b
=
b
a

⑤若
a
b
不共線,則
a
b
的夾角為銳角.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx(m∈R),e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)f(x)在區(qū)間(e,+∞)上的單調(diào)性,并求出極值.
(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是銳角,則下列各式成立的是( 。
A、sinα+cosα=
1
2
B、sinα+cosα=1
C、sinα+cosα=
4
3
D、sinα+cosα=
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)圖象正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex+x-1(x<0)
-
1
3
x3+2x(x≥0)
,給出如下四個(gè)命題:
①f(x)在[
2
,+∞)上是減函數(shù);②f(x)的最大值是2;
③函數(shù)f(x)=sint有兩個(gè)零點(diǎn);④f(x)≤
4
3
2
在R上恒成立.
其中正確的命題有
 
.(把正確的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式-5x≤x2+mx+5≤4恰好有一個(gè)實(shí)數(shù)解,則實(shí)數(shù)m的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三數(shù)學(xué)競賽初賽考試后,對(duì)90分以上(含90分)的成績進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.若130~140分?jǐn)?shù)段的人數(shù)為2人.
(1)求這組數(shù)據(jù)的樣本容量及平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成幫扶學(xué)習(xí)小組.若選出的兩人成績之差大于20,則稱這兩人為“黃金搭檔組”,試求選出的兩人為“黃金搭檔組”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案