8.下列運算正確的個數(shù)為( 。
①(x2cosx)'=-2xsinx
②(3x)'=3xlog3e
③$(lgx)'=\frac{1}{xlge}$
④$(\frac{e^x}{x})'=\frac{{{e^x}+x{e^x}}}{x^2}$.
A.0B.1C.2D.3

分析 運用導數(shù)的求導公式對各運算檢驗即可.

解答 解:①(x2cosx)'=2xcosx-x2sinx;
②(3x)'=3xln3;
③$(lgx)'=\frac{1}{xlge}$應該為(lgx)'=$\frac{1}{xln10}$
④$(\frac{e^x}{x})'=\frac{{{e^x}+x{e^x}}}{x^2}$.應該為$(\frac{{e}^{x}}{x})'=\frac{{e}^{x}x-{e}^{x}}{{x}^{2}}$;
個正確的個數(shù)為0;
故選A.

點評 本題考查了導數(shù)的運算;熟記公式是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知整數(shù)對的序列為(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第57個數(shù)對是(  )
A.(2,10)B.(10,2)C.(3,5)D.(5,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓方程為x2+y2-2ax-4ay+4a2+t=0(a≠0).
(1)若t=$\frac{1}{2}$a2,確定無論a為何值均與圓相切的直線的方程;
(2)若t=a2-4,確定無論a為何值被圓截得的弦長為1的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,-1]上,不等式f(x)≥2x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,直線$y=x+\sqrt{6}$與以原點為圓心,以橢圓E的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若斜率為k(k≠0)的直線l與橢圓E相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓E的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在平面直角坐標系xoy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,左頂點為A(-4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標;若不存在說明理由;
(Ⅲ)若過O點作直線l的平行線交橢圓C于點M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設p,q是兩個命題,若(¬p)∧q是真命題,那么( 。
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是真命題且q是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設f(x)=10x+lgx,則f′(1)等于( 。
A.10B.10ln10+$\frac{1}{ln10}$C.$\frac{10}{ln10}$+ln10D.11ln10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)與圓C2:x2+y2=b2,若在橢圓C1上存在點P,使得由點P所作的圓C2的兩條切線互相垂直,則橢圓C1的離心率的取值范圍是(  )
A.[$\frac{1}{2}$,1)B.[$\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{2}}{2}$,1]D.[$\frac{\sqrt{3}}{2}$,1)

查看答案和解析>>

同步練習冊答案