過點(diǎn)作直線,當(dāng)斜率為何值時(shí),直線與圓 有公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省鹽城中學(xué)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
.已知圓以為圓心,為半徑,過點(diǎn)作直線與圓交于不同兩點(diǎn)
(Ⅰ)若求直線的方程;
(Ⅱ)當(dāng)直線的斜率為時(shí),過直線上一點(diǎn)作圓的切線為切點(diǎn)使求點(diǎn)的坐標(biāo);
(Ⅲ)設(shè)的中點(diǎn)為試在平面上找一點(diǎn),使的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省杭州地區(qū)七校高二期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓的方程為,過點(diǎn)作直線與圓交于、兩點(diǎn)。
(1)若坐標(biāo)原點(diǎn)O到直線AB的距離為,求直線AB的方程;
(2)當(dāng)△的面積最大時(shí),求直線AB的斜率;
(3)如圖所示過點(diǎn)作兩條直線與圓O分別交于R、S,若,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓以為圓心,為半徑,過點(diǎn)作直線與圓交于不同兩點(diǎn)
(Ⅰ)若求直線的方程;
(Ⅱ)當(dāng)直線的斜率為時(shí),過直線上一點(diǎn)作圓的切線為切點(diǎn)使求點(diǎn)的坐標(biāo);
(Ⅲ)設(shè)的中點(diǎn)為試在平面上找一點(diǎn),使的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市崇明縣高三高考模擬考試二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)為圓心作圓:,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.
【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè).
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)時(shí),取得最小值為.
計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.
故圓T的方程為:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com