5.下列命題中真命題的個(gè)數(shù)為( 。
①“p∨(¬p)”必為真命題;
②2+$\sqrt{5}$>$\sqrt{3}$+$\sqrt{6}$;
③數(shù)列{5-2n}是遞減的等差數(shù)列;
④函數(shù)f(x)=2x+$\frac{1}{x}$(x<0)的最小值為-2$\sqrt{2}$.
A.1B.2C.3D.4

分析 ①,p與¬p一真一假;
②,判定(2+$\sqrt{5}$)2-($\sqrt{3}$+$\sqrt{6}$)2的符號(hào)即可;
③,數(shù)列{5-2n}的公差為-2,是遞減的等差數(shù)列;
④,x<0時(shí),f(x)=2x+$\frac{1}{x}$=)=-(-2x+$\frac{1}{-x}$)$≤-2\sqrt{2}$.

解答 解:對(duì)于①,p與¬p一真一假,則“p∨(¬p)”必為真命題,正確;
對(duì)于②,因?yàn)椋?+$\sqrt{5}$)2-($\sqrt{3}$+$\sqrt{6}$)2=4$\sqrt{5}$-2$\sqrt{18}$=$\sqrt{80}-\sqrt{72}>0$,故正確;
對(duì)于③,數(shù)列{5-2n}的公差為-2,是遞減的等差數(shù)列,故正確;
對(duì)于④,x<0時(shí),f(x)=2x+$\frac{1}{x}$=)=-(-2x+$\frac{1}{-x}$)$≤-2\sqrt{2}$,最大值為-2$\sqrt{2}$,故錯(cuò).
故答案為:C.

點(diǎn)評(píng) 本題考查了命題真假的判定,涉及到了大量的基礎(chǔ)知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“?x>0,ex-x-1≥0”的否定是?x>0,ex-x-1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=-|x|-\sqrt{x}+3$的零點(diǎn)所在區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一般來說,一個(gè)人腳越長(zhǎng),他的身高就越高.現(xiàn)對(duì)10名成年人的腳長(zhǎng)x(單位:cm)與身高y(單位:cm)進(jìn)行測(cè)量,得如下數(shù)據(jù):
x20212223242526272829
y141146154160169176181188197203
作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近.經(jīng)計(jì)算得到一些數(shù)據(jù):
$\overline{x}$=24.5,$\overline{y}$=171.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5
某刑偵人員在某案發(fā)現(xiàn)場(chǎng)發(fā)現(xiàn)一對(duì)裸腳印,量得每個(gè)腳印長(zhǎng)26.5cm,請(qǐng)你估計(jì)案發(fā)嫌疑人的身高為( 。
A.185B.185.5C.186D.186.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的第1項(xiàng)為a1=1,且an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$(n=1,2,3,4,…),通過計(jì)算a1,a2,a3,a4,猜想這個(gè)數(shù)列的通項(xiàng)公式為an=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.我邊防局接到情報(bào),在海礁AB所在直線l的一側(cè)點(diǎn)M處有走私團(tuán)伙在進(jìn)行交易活動(dòng),邊防局迅速派出快艇前去搜捕.如圖,已知快艇出發(fā)位置在l的另一側(cè)碼頭P處,PA=8公里,PB=10公里,∠APB=60°.
(1)是否存在點(diǎn)M,使快艇沿航線P→A→M或P→B→M的路程相等.如存在,則建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求出點(diǎn)M的軌跡方程,且畫出軌跡的大致圖形;如不存在,請(qǐng)說明理由.
(2)問走私船在怎樣的區(qū)域上時(shí),路線P→A→M比路線P→B→M的路程短,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,在Rt△ABC中,∠C=90°,BC=6,AC=9,D,E分別為AC、AB上的點(diǎn),且DE∥BC,DE=4,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點(diǎn),求CM與平面A1BE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},則A∩B=( 。
A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)具有線性相關(guān)的變量x,y有一組觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…6),其回歸直線方程是$\widehaty=\frac{1}{4}x+a$,且x1+x2+…+x6=10,y1+y2+…+y6=4,則實(shí)數(shù)a的值是( 。
A.$\frac{2}{3}$3B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案