13.若xlog32=1,則2x+2-x=$\frac{10}{3}$.

分析 xlog32=1,可得x=log23.再利用對數(shù)恒等式即可得出.

解答 解:∵xlog32=1,∴x=log23.
則2x=3,2-x=$\frac{1}{3}$.
∴2x+2-x=3+$\frac{1}{3}$=$\frac{10}{3}$.
故答案為:$\frac{10}{3}$.

點(diǎn)評 本題考查了指數(shù)與對數(shù)的運(yùn)算法則、對數(shù)恒等式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)是偶函數(shù),定義域?yàn)镽,g(x)=f(x)+2x,若g(log27)=3,則$g({{{log}_2}\frac{1}{7}})$=( 。
A.-4B.4C.$-\frac{27}{7}$D.$\frac{27}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{1-i}{1+i}$(i是虛數(shù)單位)的虛部為(  )
A.-iB.-2iC.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax(a>0,且a≠1),當(dāng)x<0時(shí),f(x)>1,方程y=ax+$\frac{1}{a}$表示的直線是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a,b∈R,命題p:$\frac{a+b}{2}<\sqrt{ab}$,命題q:|a+b|=|a|+|b|,則p是q成立的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$a={2^{2.1}},b={(\frac{1}{2})^{-\frac{1}{2}}},c={log_5}$4,則a,b,c的大小關(guān)系為( 。
A.b<c<aB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=cos2x+sinx-1的值域?yàn)椋ā 。?table class="qanwser">A.$[{-\frac{1}{4},\frac{1}{4}}]$B.[0,$\frac{1}{4}$]C.[-2,$\frac{1}{4}$]D.[-1,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$f(x)=ln(2x+\sqrt{4{x^2}+1})+a$,若f(0)=1,則$f(lg2)+f(lg\frac{1}{2})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“?x∈R,?n∈N*,使得n≥x2”的否定形式是( 。
A.?x∈R,?n∈N*,使得n<x2B.?x∈R,?n∈N*,使得n<x2
C.?x∈R,?n∈N*,使得n<x2D.?x∈R,?n∈N*,使得n<x2

查看答案和解析>>

同步練習(xí)冊答案