15.如圖,漁船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距6海里,漁船乙以5 海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東α的方向追趕漁船乙,剛好用2小時追上.
(1)求漁船甲的速度;
(2)求sinα的值.

分析 (1)在△ABC中使用余弦定理計算BC,從而得出漁船甲的速度;
(2)在△ABC中,使用正弦定理計算∠BCA,從而得出sinα.

解答 解:(1)依題意,∠BAC=120°,AB=6,AC=5×2=10,∠BCA=α.
在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB×AC×cos∠BAC
=62+102-2×6×10×cos120°=196.
解得BC=14,所以漁船甲的速度為$\frac{BC}{2}=7$海里/小時.
答:漁船甲的速度為7海里/小時.
(2)在△ABC中,因為AB=6,∠BAC=120°,BC=14,∠BCA=α,
由正弦定理,得$\frac{AB}{sinα}=\frac{BC}{sin120°}$.
即$sinα=\frac{ABsin120°}{BC}=\frac{{6×\frac{{\sqrt{3}}}{2}}}{14}=\frac{{3\sqrt{3}}}{14}$.
答:sinα的值為$\frac{3\sqrt{3}}{14}$.

點評 本題考查了正余弦定理在三角形中的實際應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個學(xué)生通過某次數(shù)學(xué)測試的概率是$\frac{3}{4}$,他連續(xù)測試n次,要保證他至少有一次通過的概率大于0.99,那么n的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知-1≤a≤3,2≤b≤4,則2a-b的取值范圍是( 。
A.[-6,4]B.[0,10]C.[-4,2]D.[-5,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標系xOy中,曲線C的方程為:(x-1)2+y2=1以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)直線l1的極坐標方程是2ρsin(θ+$\frac{π}{3}$)+3$\sqrt{3}$=0,直線l2:θ=$\frac{π}{3}$(ρ∈R)與曲線C交于O、P兩點,與直線l1的交于點Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{{x}^{2}+1,0≤x<5}\\{f(x-5),x>5}\end{array}\right.$,則f(2014)=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a>0時,討論f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x-$\frac{a}{2}$lnx,當(dāng)f(x)有兩個極值點為x1,x2,且x1∈(0,e)時,求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某棱柱的三視圖如圖示,則該棱柱的體積為( 。
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色外賣份數(shù)x(份)與收入y(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù)x(份)24568
收入y(元)3040605070
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:參考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y-\widehatb\overline x$;
參考數(shù)據(jù):$\sum_{i=1}^5{x_1^2}=145,\sum_{i=1}^5{y_1^2}=13500,\sum_{i=1}^5{{x_i}{y_i}}=1380$.

查看答案和解析>>

同步練習(xí)冊答案