【題目】如圖,正方形、的邊長都是1,而且平面、互相垂直.M上移動,點N上移動,若.

1)當a為何值時,的長最。

2)當長最小時,求面與面所成的二面角α的余弦值.

【答案】1; (2.

【解析】

1)作于點P,于點Q,連接,易得是平行四邊形,再將表示為關于a的函數(shù),利用配方法求最小值即可;

2)取的中點G,連接、,根據(jù)二面角的平面角的定義可知即為二面角α的平面角,然后利用余弦定理求解即可.

解:(1)作于點P,

于點Q,連接,依題意可得,且,

是平行四邊形

. 由已知,,

,

所以當,即M,N分別移動到的中點時,的長取最小值

2)取的中點G,連接,

,,

,,

即為二面角α的平面角.

所以由余弦定理有.

長最小時,面與面所成的二面角α的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,底面ABC,,,D,E分別是ACPC的中點,FPB上一點,且,MPA的中點,二面角的大小為45°.

1)證明:平面AEF;

2)求直線AF與平面BCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合,設集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個數(shù)之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD的底面是梯形.BCADABBCCD1,AD2,

(Ⅰ)證明;ACBP

(Ⅱ)求直線AD與平面APC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能.近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機量兆瓦

0.4

0.8

1.6

3.1

5.1

7.1

9.7

12.2

某位同學分別用兩種模型:①,②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于):

經(jīng)過計算得,,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.

2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點,ACBE相交于點O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案