如圖,正方形CDEF內(nèi)接于橢圓
x2
a2
+
y2
b2
=1(a>b>0),且它的四條邊與坐標軸平行,正方形GHPQ的頂點G,H在橢圓上,頂點P,Q在正方形的邊EF上.且CD=2PQ=
4
10
5

(1)求橢圓的方程;
(2)已知點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A,B兩個不同點,求證:直線MA,MB與x軸始終圍成一個等腰三角形.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)求出點E(
2
10
5
,
2
10
5
),點G(
4
10
5
10
5
),代入橢圓方程,求出a,b,即可求橢圓的方程;
(2)設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可.直線l方程為y=
1
2
x+m,代入橢圓方程
x2
8
+
y2
2
=1
,消去y,利用韋達定理,結(jié)合斜率公式,化簡可得結(jié)論.
解答: (1)解:∵CD=
4
10
5
,∴點E(
2
10
5
2
10
5
),
又∵PQ=
2
10
5
,∴點G(
4
10
5
,
10
5
),
8
5a2
+
8
5b2
=1
32
5a2
+
2
5b2
=1
解得
a2=8
b2=2
,
∴橢圓方程
x2
8
+
y2
2
=1
.(4分)
(2)證明:設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可,設A(x1,y1),B(x2,y2),則
直線l方程為y=
1
2
x+m,代入橢圓方程
x2
8
+
y2
2
=1
,
消去y,x2+2mx+2m2-4=0可得x1+x2=-2m,x1x2=2m2-4.(9分)
而k1+k2=
y1-1
x1-2
+
y2-1
x2-1
=
x1x2+(m-2)(x1+x2)-4(m-1)
(x1-2)(x2-2)
=
2m2-4-2m2+4m-4m+4
(x1-2)(x2-2)
=0,(12分)
∴k1+k2=0,故直線MA、MB與x軸始終圍成一個等腰三角形.(13分)
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查韋達定理的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y-4≤0
x-3y≥0
y≥0
,則z=2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=-7”是“直線(3+a)x+4y=5-3a與直線2x+(5+a)y=8互相平行”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知集合A={(x,y)|x+y≤1,且x≥0,y≥0},則集合B={(x+y,x-y)|(x,y)∈A}內(nèi)的點所形成的平面區(qū)域的面積為(  )
A、2
B、1
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
(1)平面內(nèi)的一條直線與平面外的一條直線是異面直線;
(2)若三個平面兩兩相交,則這三個平面把空間分成7部分;
(3)用一個面去截棱錐,底面與截面之間的部分叫棱臺;
(4)一條直線與兩條異面直線中的一條直線相交,那么它和另一條直線可能相交、平行或異面.
其中真命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C過點M(0,-2),N(3,1),且圓心C在直線x+2y+1=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)問是否存在滿足以下兩個條件的直線l:①斜率為1;②直線被圓C截得的弦為AB,以AB為直徑的圓C1過原點.若存在這樣的直線,請求出其方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1
(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以雙曲線C2的另一焦點F1為圓心的圓M與直線y=
3
x
相切,圓N:(x-2)2+y2=1.過點P(1,
3
)作互相垂直且分別與圓M、圓N相交的直線l1和l2,設l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問:
s
t
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的一個焦點為(0,-
3
),且橢圓經(jīng)過點(
1
2
3
).開口向上的拋物線C2的焦點到準線的距離為2,C1的中心和C2的頂點均為坐標原點O.
(1)求C1和C2的標準方程;
(2)A、B為拋物線C2上的點,分別過A、B作拋物線C2的切線,兩條切線交于點Q,若點Q恰好在其準線上.
    ①直線AB是否過定點?若是,求出定點坐標;若不是,說明理由;
    ②指出點Q與以線段AB為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,P為不等式組
y-3≤0
3x+y-6≥0
x-y-2≤0
所表示的平面區(qū)域內(nèi)一動點,則線段|OP|的最小值等于
 

查看答案和解析>>

同步練習冊答案