【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2011-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)臺(tái)數(shù)(萬臺(tái)) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
該產(chǎn)品的年利潤(百萬元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修臺(tái)數(shù)(臺(tái)) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分計(jì)算結(jié)果:,,, , |
注:年返修率=
(1)從該公司2011-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬臺(tái))的線性回歸方程(精確到0.01).
附:線性回歸方程中, ,.
【答案】(1)見解析;(2)
【解析】
(1)先判斷得到隨機(jī)變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計(jì)算得到相應(yīng)的概率,進(jìn)而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.
(1)由數(shù)據(jù)可知,,,,,五個(gè)年份考核優(yōu)秀.
由題意的所有可能取值為,,,,
,
,
,
.
故的分布列為:
所以.
(2)因?yàn)?/span>,所以去掉年的數(shù)據(jù)后不影響的值,
所以.
又去掉年的數(shù)據(jù)之后,
所以,
從而回歸方程為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,點(diǎn)在以為直徑的圓上,平面平面,點(diǎn)在線段上,且,,,,點(diǎn)為的重心,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過兩點(diǎn),.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓的右焦點(diǎn)的直線交橢圓于,兩點(diǎn),且直線與以線段為直徑的圓交于另一點(diǎn)(異于點(diǎn)),若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):
141 432 341 342 234 142 243 331 112 322
342 241 244 431 233 214 344 142 134 412
由此可以估計(jì),恰好第三次就停止摸球的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,側(cè)棱面,.
(1)若是的中點(diǎn),求與所成的角;
(2)設(shè)是上一點(diǎn),過的平面將四棱柱分成體積相等的兩部分,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共13分)已知函數(shù) 的最小正周期為.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間及其圖象的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月鄭州市被國務(wù)院確定為全國46個(gè)生活垃圾分類處理試點(diǎn)城市之一,此后由鄭州市城市管理局起草公開征求意見,經(jīng)專家論證,多次組織修改完善,數(shù)易其稿,最終形成《鄭州市城市生活垃圾分類管理辦法》(以下簡稱《辦法》).《辦法》已于2019年9月26日被鄭州市人民政府第35次常務(wù)會(huì)議審議通過,并于2019年12月1日開始施行.《辦法》中將鄭州市生活垃圾分為廚余垃圾、可回收垃圾、有害垃圾和其他垃圾4類.為了獲悉高中學(xué)生對垃圾分類的了解情況,某中學(xué)設(shè)計(jì)了一份調(diào)查問卷,500名學(xué)生參加測試,從中隨機(jī)抽取了100名學(xué)生問卷,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,,…,,并整理得到如下頻率分布直方圖:
(1)從總體的500名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)不低于60的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的學(xué)生人數(shù),
(3)學(xué)校環(huán)保志愿者協(xié)會(huì)決定組織同學(xué)們利用課余時(shí)間分批參加“垃圾分類,我在實(shí)踐”活動(dòng),以增強(qiáng)學(xué)生的環(huán)保意識(shí).首次活動(dòng)從樣本中問卷成績低于40分的學(xué)生中隨機(jī)抽取2人參加,已知樣本中分?jǐn)?shù)小于40的5名學(xué)生中,男生3人,女生2人,求抽取的2人中男女同學(xué)各1人的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場計(jì)劃設(shè)計(jì)建造一條2000米長的水渠,其橫斷面如圖所示.其中,底部是半徑為1米的圓弧,上部是有一定傾角的線段與,渠深為米,且圓弧的圓心為O在上,,,,.據(jù)測算,水渠底部曲面每平方米的造價(jià)為百元,上部矩形壁面每平方米的造價(jià)為1百元,其他費(fèi)用忽略不計(jì).設(shè),.
(1)試用表示水渠建造的總費(fèi)用(單位:百元);
(2)試確定的值,使得建造總費(fèi)用最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿足.
證明:①;
②.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com