2.如圖,AB是圓O的直徑,AC是圓O的切線,BC交圓O點E.
(I)過點E做圓O的切線DE,交AC于點D,證明:點D是AC的中點;
(Ⅱ)若OA=$\frac{\sqrt{2}}{2}$CE,求∠ACB大。

分析 (I)連接OE,OD,則△OED≌△OAD,證明OD∥BC,利用O為AB的中點,可得點D是AC的中點;
(Ⅱ)連接AE,由射影定理有AE2=CE•BE,求出BE,AE,可得BC,即可求∠ACB大。

解答 證明:(I)連接OE,OD,則△OED≌△OAD,
∴∠AOD=∠EOD.
∵∠ABC=$\frac{1}{2}$∠AOE,
∴∠AOD=∠ABC,
∴OD∥BC,
∵O為AB的中點,
∴點D是AC的中點;
解:(Ⅱ)連接AE,設(shè)CE=1,AE=x.則AB=2OA=$\sqrt{2}$,
∴BE=$\sqrt{2-{x}^{2}}$.
Rt△ABC中,由射影定理有AE2=CE•BE,
∴x2=$\sqrt{2-{x}^{2}}$.
∴x=1,
∴BC=BE+CE=2,
Rt△ABC中,sin∠ACB=$\frac{AB}{BC}$=$\frac{\sqrt{2}}{2}$,
∴∠ACB=45°.

點評 本題考查三角形全等的判定與性質(zhì),考查射影定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù).
(1)求函數(shù)h(x)=xe2f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)g(x)=(λ+a)x-cosx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])是減函數(shù),且對任意實數(shù)λ都滿足g(x)≤λt-1,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知四棱錐P-ABCD如圖所示,其中平面PAD⊥平面ABCD,PA⊥AD,PA=AB=BC=AC=4,線段AC被線段BD平分.
(I)求證:BD⊥平面PAC;
(Ⅱ)若∠DAC=30°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,若以極點為原點,極軸所在直線為x軸建立直角坐標(biāo)系,則C1的直角坐標(biāo)方程為y=x+2,;曲線C2在直角坐標(biāo)系中的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=2+2sint\end{array}$(參數(shù)t∈[-$\frac{π}{2}$,$\frac{π}{2}}$]),則C2的直角坐標(biāo)方程為x2+(y-2)2=4;C1被C2截得的弦長為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,☉O1,☉O2交于兩點P,Q,直線AB過點P,與⊙O1,⊙O2分別交于點A,B,直線CD過點Q,與⊙O1,⊙O2分別交于點C,D.求證:AC∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,F(xiàn)為BD中點,連接AF交CH于點E,
(Ⅰ)求證:FC是⊙O的切線;
(Ⅱ)若FB=FE,⊙O的半徑為$\sqrt{2}$,求FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知矩陣A=$[\begin{array}{l}{3}&{0}\\{2}&{1}\end{array}]$的逆矩陣A-1=$[\begin{array}{l}{a}&\\{c}&njdb57z\end{array}]$,則行列式$|\begin{array}{l}{a}&\\{c}&jh75jxf\end{array}|$的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查,得到了如表的列聯(lián)表:
患心肺疾病不患心肺疾病合計
5
10
合計50
已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為患心肺疾病與性別有關(guān)?說明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為x,求x的分布列、數(shù)學(xué)期望.
參考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖:四邊形ABCD為等腰梯形,且AD∥BC,E為BC中點,AB=AD=BE.現(xiàn)沿DE將△CDE折起成四棱錐C′-ABED,點O為ED的中點.
(1)在棱AC′上是否存在一點M,使得OM⊥平面C′BE?并證明你的結(jié)論;
(2)若AB=2,求四棱錐C′-ABED的體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案