分析 (1)根據(jù)弦切角定理,得到∠BAP=∠C,結(jié)合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;
(2)通過內(nèi)角相等證明出△APC∽△BPA,根據(jù)AC=AP得到∠APC=∠C,結(jié)合(I)中的結(jié)論可得∠APC=∠C=∠BAP,再在△APC中根據(jù)直徑BC得到∠PAC=90°+∠BAP,利用三角形內(nèi)角和定理可得∠C=∠APC=∠BAP=30°.利用直角三角形中正切的定義,得到$\frac{AC}{AB}$=$\sqrt{3}$,即可證明結(jié)論.
解答 證明:(1)∵PA是切線,AB是弦,∴∠BAP=∠C
又∵∠APD=∠CPE,∴∠BAP+∠APD=∠C+∠CPE
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE
∴∠ADE=∠AED; …(5分)
(2)由(1)知∠BAP=∠C,又∠APC=∠BPA,∴△APC∽△BPA,
∴$\frac{PC}{PA}=\frac{AC}{AB}$,
∵AC=AP,∠BAP=∠C=∠APC,
由三角形的內(nèi)角和定理知:∠C+∠APC+∠PAC=180°,
∵BC是圓O的直徑,∴∠BAC=90°
∴∠C+∠APC+∠BAP=90°,∴∠C=∠APC=∠BAP=30°,
在Rt△ABC中,$\frac{AC}{AB}$=$\sqrt{3}$,∴$\frac{PC}{PA}$=$\sqrt{3}$,∴PC=$\sqrt{3}$PA …(10分)
點(diǎn)評(píng) 本題綜合考查了弦切角、三角形的外角定理、直角三角形中三角函數(shù)的定義和相似三角形的性質(zhì)等知識(shí)點(diǎn),屬于中檔題.找到題中角的等量關(guān)系,計(jì)算出Rt△ABC是含有30度的直角三角形,是解決本題的關(guān)鍵所在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com