19.數(shù)列{an}的前n項和為Sn
(1)當{an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時,求an
(2)若{an}是等差數(shù)列,且S1+a2=7,S2+a3=15,證明:對于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

分析 (1)$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}-1$是等差數(shù)列,得$\frac{2}{a_3}=\frac{1}{a_1}+\frac{1}{a_4}-1$,又{an}是等比數(shù)列,a1=1,設(shè)公比為q,則有$\frac{2}{q^2}=1+\frac{1}{q^3}-1$,解出即可得出.
(2)設(shè){an}的公差距為d,由S1+a2=7,S2+a3=15得$\left\{{\begin{array}{l}{2{a_1}+d=7}\\{3{a_1}+3d=15}\end{array}}\right.$,解出可得Sn,利用“裂項求和”方法與數(shù)列的單調(diào)性即可得出.

解答 解:(1)$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}-1$是等差數(shù)列,得$\frac{2}{a_3}=\frac{1}{a_1}+\frac{1}{a_4}-1$
又{an}是等比數(shù)列,a1=1,設(shè)公比為q,則有$\frac{2}{q^2}=1+\frac{1}{q^3}-1$,即$\frac{2}{q^2}=\frac{1}{q^3}$
而q≠0,解得44$q=\frac{1}{2}$,…(4分)
故4${a_n}=1×{(\frac{1}{2})^{n-1}}={(\frac{1}{2})^{n-1}}$…(6分)
(2)設(shè){an}的公差距為d,由S1+a2=7,S2+a3=15,得$\left\{{\begin{array}{l}{2{a_1}+d=7}\\{3{a_1}+3d=15}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{{a_1}=2}\\{d=3}\end{array}}\right.$. …(8分)
則${S_n}=n{a_1}+\frac{n(n-1)}{2}d=\frac{3}{2}{n^2}+\frac{1}{2}n$.
于是$\frac{1}{{{S_n}+n}}=\frac{1}{{\frac{3}{2}{n^2}+\frac{3}{2}n}}=\frac{2}{3}×\frac{1}{n(n+1)}=\frac{2}{3}(\frac{1}{n}-\frac{1}{n+1})$,…(10分)
故$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}=\frac{2}{3}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$\frac{2}{3}(1-\frac{1}{n+1})<\frac{2}{3}$.…(12分)

點評 本題考查了“裂項求和法”、等差數(shù)列與等比數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.將cos2x+sin2x化為Asin(x+θ)的形式,若函數(shù)f(x)=Asin(x+θ),則其值域為[-$\sqrt{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在我校進行的選修課結(jié)業(yè)考試中,所有選修“數(shù)學與邏輯”的同學都同時也選修了“閱讀與表達”的課程,選修“閱讀與表達”的同學都同時也選修了“數(shù)學與邏輯”的課程.選修課結(jié)業(yè)成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人,

(1)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(2)現(xiàn)在從“數(shù)學與邏輯”科目的成績?yōu)锳和D的考生中隨機抽取兩人,則求抽到的兩名考生都是成績?yōu)锳的考生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}的前n項和為Sn
(1)當{an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時,求an;
(2)若{an}是等差數(shù)列,且S1+a2=3,S2+a3=6,求和:Tn=$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{3}-\frac{y^2}{6}=1$的離心率e=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,則f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.邊長為2的兩個等邊△ABD,△CBD所在的平面互相垂直,則四面體ABCD的體積是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,在正方體..中,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-ABC的正(主)視圖與側(cè)(左)視圖的面積的比值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的焦距為2,過短軸的一個端點與兩個焦點的圓的面積為$\frac{4}{3}$π,過橢圓C的右焦點作斜率為k(k≠0)的直線l與橢圓C相交于A、B兩點,線段AB的中點為P.
(1)求橢圓C的標準方程;
(2)過點P垂直于AB的直線與x軸交于點D,且|DP|=$\frac{3\sqrt{2}}{7}$,求k的值.

查看答案和解析>>

同步練習冊答案