已知α∈(
π
2
,π),sinα=
5
5
,則sin(
π
4
+α)
的值為
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)間的關(guān)系式可求得cosα的值,再利用兩角和的正弦公式即可求得sin(
π
4
+α)
的值.
解答: 解:∵α∈(
π
2
,π),sinα=
5
5
,
cosα=-
1-sin2α
=-
2
5
5
,
sin(
π
4
+α)
=sin
π
4
cosα+cos
π
4
sinα=
2
2
•(-
2
5
5
)+
2
2
5
5
=-
10
10

故答案為:-
10
10
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),考查同角三角函數(shù)間的關(guān)系式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=3tan(2x+
π
4
)的定義域,周期和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)?x∈[-1,1],不等式x2+mx+3m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用.下面是利用Monte-Carlo方法來計(jì)算定積分.考慮定積分
1
0
x4dx,這時(shí)
1
0
x4dx等于由曲線y=x4,x軸,x=1所圍成的區(qū)域M的面積,為求它的值,我們?cè)贛外作一個(gè)邊長為1正方形OABC.設(shè)想在正方形OABC內(nèi)隨機(jī)投擲n個(gè)點(diǎn),若n個(gè)點(diǎn)中有m個(gè)點(diǎn)落入M中,則M的面積的估計(jì)值為
m
n
,此即為定積分
1
0
x4dx的估計(jì)值I.向正方形ABCD中隨機(jī)投擲10000個(gè)點(diǎn),有ξ個(gè)點(diǎn)落入?yún)^(qū)域M
(1)若ξ=2099,計(jì)算I的值,并以實(shí)際值比較誤差是否在5%以內(nèi)
(2)求ξ的數(shù)學(xué)期望
(3)用以上方法求定積分,求I與實(shí)際值之差在區(qū)間(-0.01,0.01)的概率
附表:p(n)=
n
i=0
C
 
k
10000
×0.2k×0.810000-k
n189919001901209921002101
P(n)0.00580.00620.00670.99330.99380.9942

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知B(-2,0),C(2,0)是△ABC的兩個(gè)頂點(diǎn),且滿足|sinB-sinC|=
1
2
sinA.
(Ⅰ)求頂點(diǎn)A的軌跡方程;
(Ⅱ)過點(diǎn)C作傾斜角為
π
4
的直線交點(diǎn)A的軌跡于E、F兩點(diǎn),求|EF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的零點(diǎn)是-1和3,當(dāng)x∈(-1,3)時(shí),f(x)<0,且f(4)=5.
(1)求該二次函數(shù)的解析式;
(2)求函數(shù)g(x)=(
1
2
f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tan(x-
π
4
)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式kx2-2x+6k<0,(k>0)
(1)若不等式解集為∅,求實(shí)數(shù)k的取值范圍;
(2)若不等式的解集為集合{x|2<x<3}的子集,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為直線,α,β為平面,給出下列命題(  )
m⊥α
m⊥β
⇒α∥β②
m?α
n?β
α∥β
⇒m∥n③
m⊥α
m⊥n
⇒n∥α④
m⊥β
n⊥β
⇒m∥n
其中的正確命題序號(hào)是.
A、②③B、③④
C、①④D、①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案