【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)求y關(guān)于x的線性回歸方程;(已知 )
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了多少?lài)崢?biāo)準(zhǔn)煤.
【答案】
(1)解:∵ (噸),
(噸),
,
,
∴ ,
∴a= ﹣0.7× =3.5﹣0.7×4.5=0.35,
∴y關(guān)于x的回歸方程為
(2)解:由(1)可知技術(shù)改造后100噸甲產(chǎn)品的生產(chǎn)能耗約為0.7×100+0.35=70.35(噸),
∵技術(shù)改造前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸,
∴降低的能耗約為90﹣70.35=19.65(噸),
即預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了19.65噸標(biāo)準(zhǔn)煤
【解析】(1)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個(gè)數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點(diǎn)代入,求出a的值,得到線性回歸方程.(2)根據(jù)上一問(wèn)所求的線性回歸方程,把x=100代入線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低標(biāo)準(zhǔn)煤的數(shù)量.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個(gè)相鄰對(duì)稱(chēng)中心的距離為 ,且過(guò)點(diǎn)( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店銷(xiāo)售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價(jià)格進(jìn)行5天試銷(xiāo),每種單價(jià)試銷(xiāo)1天,得到如下數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷(xiāo)量(冊(cè)) | 61 | 56 | 50 | 48 | 45 |
(1)求試銷(xiāo)5天的銷(xiāo)量的方差和對(duì)的回歸直線方程;
(2)預(yù)計(jì)今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從(1)中的回歸方程,已知每?jī)?cè)單元卷的成本是14元,為了獲得最大利潤(rùn),該單元卷的單價(jià)卷的單價(jià)應(yīng)定為多少元?
(附:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。
①求所選2人都是男生的概率;
②求所選2人恰有1名女生的概率;
③求所選2人中至少有1名女生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)在區(qū)間[1,3]上任取兩整數(shù)a、b,求二次方程x2+2ax+b2=0有實(shí)數(shù)根的概率.
(2)在區(qū)間[1,3]上任取兩實(shí)數(shù)a、b,求二次方程x2+2ax+b2=0有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期中央電視臺(tái)播出的《中國(guó)詩(shī)詞大會(huì)》火遍全國(guó),下面是組委會(huì)在選拔賽時(shí)隨機(jī)抽取的100名選手的成績(jī),按成績(jī)分組,得到的頻率分布表如下所示:
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | |||
第2組 | ① | ||
第3組 | 20 | ② | |
第4組 | 20 | ||
第5組 | 10 | ||
合計(jì) | 100> |
(1)請(qǐng)先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖(用陰影表示);
(2)為了能選拔出最優(yōu)秀的選手,組委會(huì)決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取5名選手進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名選手進(jìn)入第二輪面試;
(3)在(2)的前提下,組委會(huì)決定在5名選手中隨機(jī)抽取2名選手接受考官進(jìn)行面試,求:第4組至少有一名選手被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其圖象經(jīng)過(guò)點(diǎn) .
(1)求f(x)的解析式;
(2)已知 ,且 , ,求f(α﹣β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車(chē)床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | |||||
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com