10.集合A={x|x(2-x)>0},B={x|x-1≥0},則集合A∪B=( 。
A.{x|1≤x<2}B.{x|x>2}C.{x|x≥1或x<0}D.{x|x>0}

分析 解不等式得出集合A、B,根據(jù)并集的定義寫出A∪B.

解答 解:集合A={x|x(2-x)>0}={x|0<x<2},
B={x|x-1≥0}={x|x≥1},
則集合A∪B={x|x>0}.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè){an}是首項為3的正項數(shù)列,且(n+1)an+12-nan2+an+1•an=0(n=1,2,3,…),則它的通項公式an=$\frac{3}{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列說法正確的是( 。
A.命題:“若x2-3x+2=0,則x=2”的否命題為假命題
B.命題”存在x≥0,使2x=5”的否定為”對任意x<0,都有2x≠5”
C.若p且q為假命題,則p、q均為假命題
D.“a=0”是“復數(shù)a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知圓錐OO1和圓柱O1O2的組合體(它們的底面重合),圓錐的底面圓O1半徑為r=5,OA為圓錐的母線,AB為圓柱O1O2的母線,D、E為下底面圓O2上的兩點,且DE=6,AB=6.4,AO=5$\sqrt{2}$,AO⊥AD.
(1)求證:平面ABD⊥平面ODE;
(2)求二面角B-AD-O的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在長方體ABCD-A1B1C1D1中,點E在棱CC1的延長線上,且CC1=C1E=BC=$\frac{1}{2}$AB=1.
(1)求D1E的中點F到平面ACB1的距離;
(2)求證:平面D1B1E⊥平面DCB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導函數(shù),則不等式(x-1)f′(x)<0的解集為(-∞,$\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.不等式$\frac{2}{x+1}≥x$的解集是( 。
A.{x|-2≤x<-1或x≥1}B.{x|x≤-2或-1≤x<1}C.{x|x≤-2或-1<x≤1}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若向量$\overrightarrow a=(-3,2)$,$\overrightarrow b=(-1,0)$,向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,則λ等于( 。
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.$-\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若△ABC的三邊之比為3:5:7,則這個三角形較大的銳角的余弦值為(  )
A.$-\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{13}{14}$D.$\frac{11}{14}$

查看答案和解析>>

同步練習冊答案