【題目】如圖,在棱長均為4的三棱柱中, 分別是和的中點(diǎn).
(1)求證: 平面
(2)若平面平面,求三棱錐的體積.
【答案】(1)證明見解析(2)8
【解析】試題分析:(1)欲證A1D1∥平面AB1D,根據(jù)直線與平面平行的判定定理可知只需證A1D1與平面AB1D內(nèi)一直線平行,連接DD1,根據(jù)中位線定理可知B1D1∥BD,且B1D1=BD,則四邊形B1BDD1為平行四邊形,同理可證四邊形AA1D1D為平行四邊形,則A1D1∥AD
又A1D1平面AB1D,AD平面AB1D,滿足定理所需條件;
(2)根據(jù)面面垂直的性質(zhì)定理可知AD⊥平面B1C1CB,即AD是三棱錐A﹣B1BC的高,求出三棱錐A﹣B1BC的體積,從而求出三棱錐B1﹣ABC的體積.
試題解析:
(1)證明:如圖,連結(jié).在三棱柱中,
因?yàn)?/span>分別是與的中點(diǎn),所以,且.
所以四邊形為平行四邊形,所以,且.
又所以,
所以四邊形為平行四邊形,所以.
又平面, 平面,故平面.
(2)解:(方法1)
在中,因?yàn)?/span>, 為的中點(diǎn),所以.
因?yàn)槠矫?/span>平面,交線為, 平面,
所以平面,即是三棱錐的高.
在中,由,得.
在中, ,
所以的面積.
所以三棱錐的體積,即三棱錐的體積.
(方法 2)在 中,因?yàn)?/span>,
所以為正三角形,因此.
因?yàn)槠矫?/span>平面,交線為, 平面,
所以平面,即是三棱錐的高.
在中,由,得的面積.
在中,因?yàn)?/span>,所以.
所以三棱錐的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級(jí)開設(shè)五門大學(xué)先修課程,其中屬于數(shù)學(xué)學(xué)科的有兩門,分別是線性代數(shù)和微積分,其余三門分別為大學(xué)物理,商務(wù)英語以及文學(xué)寫作,年級(jí)要求每名學(xué)生只能選修其中一科,該校高二年級(jí)600名學(xué)生各科選課人數(shù)統(tǒng)計(jì)如下表:
其中選修數(shù)學(xué)學(xué)科的人數(shù)所占頻率為0.6,為了了解學(xué)生成績(jī)與選課情況之間的關(guān)系,用分層抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少2人選修線性代數(shù)的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記為選擇線性代數(shù)人數(shù)與選擇微積分人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計(jì) | |
男 | 40 | ||
女 | 5 | ||
總計(jì) | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為的中點(diǎn),AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“世界睡眠日”定在每年的3月21日,某網(wǎng)站于2017年3月14日到3月20日持續(xù)一周網(wǎng)上調(diào)查公眾日平均睡眠的時(shí)間(單位:小時(shí)),共有2 000人參加調(diào)查,現(xiàn)將數(shù)據(jù)整理分組后如下表所示.
序號(hào)(i) | 分組睡眠時(shí)間 | 組中值(mi) | 頻數(shù)(人數(shù)) | 頻率(fi) |
1 | [4,5) | 4.5 | 80 | |
2 | [5,6) | 5.5 | 520 | 0.26 |
3 | [6,7) | 6.5 | 600 | 0.30 |
4 | [7,8) | 7.5 | ||
5 | [8,9) | 8.5 | 200 | 0.10 |
6 | [9,10] | 9.5 | 40 | 0.02 |
(1)求出表中空白處的數(shù)據(jù),并將表格補(bǔ)充完整.
(2)畫出頻率分布直方圖.
(3)為了對(duì)數(shù)據(jù)進(jìn)行分析,采用了計(jì)算機(jī)輔助計(jì)算.程序框圖如圖所示,求輸出的S值,并說明S的統(tǒng)計(jì)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線與交與, ,求, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位停靠的時(shí)間(單位:小時(shí)),如果?繒r(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),以此類推,統(tǒng)計(jì)結(jié)果如表:
?繒r(shí)間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數(shù)量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為小時(shí),求的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在?吭摬次粫r(shí)必須等待的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)(0,1)的直線與橢圓交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年時(shí)紅軍長征勝利80周年,某市電視臺(tái)舉辦紀(jì)念紅軍長征勝利80周年知識(shí)問答,宣傳長征精神.首先在甲、乙、丙、丁四個(gè)不同的公園進(jìn)行支持簽名活動(dòng),其次在各公園簽名的人中按分層抽樣的方式抽取10名幸運(yùn)之星,每人獲得一個(gè)紀(jì)念品,其數(shù)據(jù)表格如下:
(Ⅰ)求此活動(dòng)中各公園幸運(yùn)之星的人數(shù);
(Ⅱ)從乙和丙公園的幸運(yùn)之星中任選兩人接受電視臺(tái)記者的采訪,求這兩人均來自乙公園的概率;
(Ⅲ)電視臺(tái)記者對(duì)乙公園的簽名人進(jìn)行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為有興趣研究“紅軍長征”歷史與性別有關(guān).
附臨界值表及公式: ,其中
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com