13.(1)已知x>0,求f(x)=$\frac{2}{x}$+2x的最小值和取到最小值時對應(yīng)x的值;
(2)已知0<x<$\frac{1}{3}$,求函數(shù)y=x(1-3x)的最大值.

分析 (1)利用基本不等式a+b≥2$\sqrt{ab}$;
(2)判斷一元二次函數(shù)f(x)在(0,$\frac{1}{3}$)上的單調(diào)性即可.

解答 解:(1)當(dāng)x>0時,
f(x)=$\frac{2}{x}$+2x≥2$\sqrt{\frac{2}{x}•2x}$=4    ①;
當(dāng)$\frac{2}{x}=2x$時,①式取等號,f(x)取得最小值,此時x=1;
(2)由題意y=x(1-3x),一元二次函數(shù)在(0,$\frac{1}{6}$)上單調(diào)遞增,($\frac{1}{6}$,$\frac{1}{3}$)上單調(diào)遞減;
故y在x=$\frac{1}{6}$處取得最大值f($\frac{1}{6}$)=$\frac{1}{12}$.

點(diǎn)評 本題主要考查了基本不等式求最值,一元二次函數(shù)的圖形特征,屬簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,終邊在陰影部分(含邊界)的角的集合是(  )
A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}
C.{α|-45°+k•360°≤α≤120°+k•360°,k∈Z}D.{α|120°+k•360°≤α≤315°+k•360°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,a=4$\sqrt{3}$,b=4$\sqrt{2}$,∠A=60°,則∠B=(  )
A.45°B.135°C.45°或135°D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=$\sqrt{{x^2}+6mx+m+8}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,…的一個通項(xiàng)公式是$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式x2-9>0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線(b+2)x+ay+4=0與直線ax+(2-b)y-3=0互相平行,則點(diǎn)(a,b)在( 。
A.圓a2+b2=1上B.圓a2+b2=2上C.圓a2+b2=4上D.圓a2+b2=8上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=|x+2|+|x-2|.
(I) 求不等式f(x)≥6的解集;
(II) 若f(x)≥a2-3a在R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算下列各式的值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{16^{0.75}}+{0.01^{\frac{1}{2}}}$;
(Ⅱ)已知log73=a,log74=b,求log748.(其值用a,b表示)

查看答案和解析>>

同步練習(xí)冊答案