16.設集合U=R,A={x|0<x<4},B={x|x2-3x+2>0},則(  )
A.A⊆BB.B⊆AC.A∪B=RD.A⊆∁RB

分析 求出B中不等式的解集確定出B,找出A與B并集即可得到答案.

解答 解:由x2-3x+2>0,解得x>2或x<1,
∴B={x|x>2或x<1},
∵A={x|0<x<4},
∴A∪B=R,
故選:C.

點評 此題考查了交集及其運算,并集及其運算,以及補集的運算,熟練掌握各自的定義是解本題的關(guān)鍵

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知在△ABC中,AD為∠BAC的平分線,以C為圓心,CD為半徑的半圓交BC的延長線于點E,交AD于點F,交AE于點M,且∠B=∠CAE,F(xiàn)E:FD=4:3.
(Ⅰ)求證:AF=DF; 
(Ⅱ)求∠AED的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列條件能判定平面α∥β的是( 。
①α∥γ且β∥γ      ②m⊥α且m⊥β       ③m∥α且m∥β       ④α⊥γ且β⊥γ
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若復數(shù)z滿足z=i(i-1),則z為( 。
A.z=-1-iB.-1+iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線C:$\frac{x^2}{2}$-y2=1,點M1,M2,…,M5為其實軸AB的6等分點,分別過這五點作斜率為k(k≠0)的一組平行線,交雙曲線C于P1,P2,…,P10,則直線AP1,AP2,…,AP10這10條直線的斜率乘積為( 。
A.$\frac{1}{16}$B.$\frac{1}{32}$C.$\frac{1}{64}$D.$\frac{1}{1024}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則幾何體的體積是(  )
A.96B.192C.144D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,平面ABEF⊥平面ABCD,且四邊形ABEF為菱形,ABCD為直角梯形,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中點
(1)求證:平面AHC⊥平面BCE
(2)求四棱錐C-ABEH的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.當a=$-\frac{17}{3}$時,關(guān)于x的方程$\frac{2ax+3}{a-x}$=$\frac{5}{4}$的根是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知Sn、Tn分別為數(shù)列{an}、{bn}的前n項和,a1=0,a2=2,2Sn+1=$\sqrt{{S_n}+{S_{n+1}}}$•$\sqrt{{S_{n+1}}+{S_{n+2}}}$,若Tn=$\frac{{{S_n}+{S_{n+1}}}}{2}$,則bn=2n-1.

查看答案和解析>>

同步練習冊答案