設f(x)=e
x-ax+
,x
已知斜率為k的直線與y=f(x)的圖象交于A(x
1,y
1),B(x
2,y
2)(x
1x
2)兩點,若對任意的a<一2,k>m恒成立,則m的最大值為( )
試題分析:當
時,
在
上是增函數(shù).
.因為斜率為k的直線與y= (x)的圖象交于A(x
1,y
1),B(x
2,y
2)(x
1x
2)兩點,所以
.又
恒成立,所以
.選D.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,其中
是自然對數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,其中
為常數(shù).
(Ⅰ)若函數(shù)
是區(qū)間
上的增函數(shù),求實數(shù)
的取值范圍;
(Ⅱ)若
在
時恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)當
時,求函數(shù)
在
上的最大值;
(2)令
,若
在區(qū)間
上不單調(diào),求
的取值范圍;
(3)當
時,函數(shù)
的圖象與
軸交于兩點
,且
,又
是
的導函數(shù).若正常數(shù)
滿足條件
.證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(13分)已知函數(shù)
.
(1)若
,求曲線
在點
處的切線方程;
(2)討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知a為實數(shù),x=1是函數(shù)
的一個極值點。
(Ⅰ)若函數(shù)
在區(qū)間
上單調(diào)遞減,求實數(shù)m的取值范圍;
(Ⅱ)設函數(shù)
,對于任意
和
,有不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)
.
(1)研究函數(shù)
的極值點;
(2)當
時,若對任意的
,恒有
,求
的取值范圍;
(3)證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調(diào)減區(qū)間為___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
(m為常數(shù))圖象上A處的切線與
平行,則點A的橫坐標是( 。
查看答案和解析>>