精英家教網 > 高中數學 > 題目詳情

已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若= 2,求直線l的方程.

(1)
(2)y=±(x+2)或y=±(x+2)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,橢圓經過點P(1.),離心率e=,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經過右焦點F的任一弦(不經過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數λ,使得?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知圓,經過橢圓的右焦點F及上頂點B,過圓外一點傾斜角為的直線交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點).
(1)指出,并求的關系式();
(2)求)的通項公式,并指出點列,, ,,  向哪一點無限接近?說明理由;
(3)令,數列的前項和為,設,求所有可能的乘積的和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的左、右焦點分別
,其上頂點為已知是邊長為的正三角形.
(1)求橢圓的方程;
(2)過點任作一動直線交橢圓兩點,記.若在線段上取一點,使得,當直線運動時,點在某一定直線上運動,求出該定直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設,過點作與軸不重合的直線交橢圓于兩點,連結、分別交直線、兩點.試問直線的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:(a>b>0),過點(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線lx=2x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F兩點.證明:當點P在橢圓C上運動時,恒為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓兩點,交橢圓于另一點.

(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案