已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(1)求橢圓的方程;
(2)設(shè),過(guò)點(diǎn)作與軸不重合的直線(xiàn)交橢圓于、兩點(diǎn),連結(jié)、分別交直線(xiàn)于、兩點(diǎn).試問(wèn)直線(xiàn)、的斜率之積是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
(1);(2)詳見(jiàn)解析.
解析試題分析:(1)由直線(xiàn)和圓相切,求,再由離心率,得,從而求,進(jìn)而求橢圓的方程;(2)要說(shuō)明直線(xiàn)、的斜率之積是否為定值,關(guān)鍵是確定、兩點(diǎn)的坐標(biāo).首先設(shè)直線(xiàn)的方程,并與橢圓聯(lián)立,設(shè),利用三點(diǎn)共線(xiàn)確定、兩點(diǎn)的坐標(biāo)的坐標(biāo),再計(jì)算直線(xiàn)、的斜率之積,這時(shí)會(huì)涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
試題解析:(1),故 4分
(2)設(shè),若直線(xiàn)與縱軸垂直,
則中有一點(diǎn)與重合,與題意不符,
故可設(shè)直線(xiàn). 5分
將其與橢圓方程聯(lián)立,消去得:
6分
7分
由三點(diǎn)共線(xiàn)可知,,, 8分
同理可得 9分
10分
而 11分
所以
故直線(xiàn)、的斜率為定值. 13分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì);2、直線(xiàn)和橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是拋物線(xiàn)上不同的兩點(diǎn),點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上,且焦點(diǎn)
到直線(xiàn)的距離為.
(I)求拋物線(xiàn)的方程;
(2)現(xiàn)給出以下三個(gè)論斷:①直線(xiàn)過(guò)焦點(diǎn);②直線(xiàn)過(guò)原點(diǎn);③直線(xiàn)平行軸.
請(qǐng)你以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫(xiě)出一個(gè)正確的命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)分別為,且點(diǎn)在橢圓C上,又.
(1)求焦點(diǎn)F2的軌跡的方程;
(2)若直線(xiàn)與曲線(xiàn)交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過(guò)原點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn):和:的焦點(diǎn)分別為,交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)的直線(xiàn)交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線(xiàn)的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
(1)求雙曲線(xiàn)方程;
(2)設(shè)Q是雙曲線(xiàn)上一點(diǎn),且過(guò)點(diǎn)F,Q的直線(xiàn)l與y軸交于點(diǎn)M,若= 2,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn)斜率為()的直線(xiàn)交橢圓于兩點(diǎn),弦的垂直平分線(xiàn)與軸相交于點(diǎn). 試問(wèn)橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)的準(zhǔn)線(xiàn)與x軸交于點(diǎn)M,過(guò)點(diǎn)M作圓的兩條切線(xiàn),切點(diǎn)為A、B,.
(1)求拋物線(xiàn)E的方程;
(2)過(guò)拋物線(xiàn)E上的點(diǎn)N作圓C的兩條切線(xiàn),切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線(xiàn),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿(mǎn)足:,動(dòng)點(diǎn)滿(mǎn)足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線(xiàn)與點(diǎn)的軌跡交于兩點(diǎn),直線(xiàn)與直線(xiàn)分別交于點(diǎn)(為坐標(biāo)原點(diǎn));
(i)試判斷直線(xiàn)與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線(xiàn)于、兩點(diǎn),若成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線(xiàn)段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com