【題目】設(shè)函數(shù)

(1)請指出函數(shù)的定義域、周期性和奇偶性;(不必證明)

(2)請以正弦函數(shù)的性質(zhì)為依據(jù),并運用函數(shù)的單調(diào)性定義證明:在區(qū)間上單調(diào)遞減.

【答案】(1),,奇函數(shù);(2)證明見解析.

【解析】

(1)由題意利用函數(shù)的定義域、奇偶性、周期性的定義,結(jié)合正弦函數(shù)的性質(zhì),得出結(jié)論.(2)以正弦函數(shù)y=sinx的單調(diào)性為依據(jù),并運用函數(shù)的單調(diào)性定義,證得結(jié)論.

(1)∵函數(shù),∴sinx≠0,∴xkπ,k∈Z,

故函數(shù)的定義域為{x|xkπ,k∈Z}.

顯然,fx)的周期,即y=sinx的周期為2π.

由于滿足,故fx)為奇函數(shù).

(2)證明:正弦函數(shù)y=sinx在區(qū)間上單調(diào)遞增,

設(shè)0<x1x2,則0<sinx1<sinx2<1,

,即 fx1)>fx2),

yfx)在區(qū)間上單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)當(dāng)a=3時,求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時,f(x)≥a2﹣a﹣13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓上有一動點,到橢圓的兩焦點,的距離之和等于,到直線的最大距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點的直線與橢圓交于不同兩點、為坐標(biāo)原點)且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓上有一動點,到橢圓的兩焦點,的距離之和等于,到直線的最大距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點的直線與橢圓交于不同兩點,為坐標(biāo)原點)且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.

(1)求橢圓的方程;

(2)設(shè)過右焦點軸不垂直的直線與橢圓交于、兩點.在線段上是否存在點,使得以、為鄰邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,

請說明理由;

(3)設(shè)點在橢圓上運動,,且點到直線的距離等于,試求動點的軌

跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)請作出該函數(shù)在長度為一個周期的閉區(qū)間的大致圖象;

(2)試判斷該函數(shù)的奇偶性,并運用函數(shù)的奇偶性定義說明理由;

(3)求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點,且M、N關(guān)于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是( )
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a1 , a2 , …,an為1,2,…,n按任意順序做成的一個排列,fk是集合{ai|ai<ak , i>k}元素的個數(shù),而gk是集合{ai|ai>ak , i<k}元素的個數(shù)(k=1,2,…,n),規(guī)定fn=g1=0,例如:對于排列3,1,2,f1=2,f2=0,f3=0
(I)對于排列4,2,5,1,3,求
(II)對于項數(shù)為2n﹣1 的一個排列,若要求2n﹣1為該排列的中間項,試求的最大值,并寫出相應(yīng)得一個排列
(Ⅲ)證明=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班級進行教改實驗.為了解教學(xué)效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出莖葉圖如圖.記成績不低于90分者為“成績優(yōu)秀”.

(1)在乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的2個均成績優(yōu)秀的概率;

(2)由以上統(tǒng)計數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為:“成績優(yōu)秀”與教學(xué)方式有關(guān).

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

同步練習(xí)冊答案