【題目】下列說法正確的是( )
A.經(jīng)過空間內的三個點有且只有一個平面
B.如果直線l上有一個點不在平面α內,那么直線上所有點都不在平面α內
C.四棱錐的四個側面可能都是直角三角形
D.用一個平面截棱錐,得到的幾何體一定是一個棱錐和一個棱臺
【答案】C
【解析】解:在A中,經(jīng)過空間內的不共線的三個點有且只有一個平面,故A錯誤; 在B中,如果直線l上有一個點不在平面α內,那么直線與平面相交或平行,
則直線上最多有一個點在平面α內,故B錯誤;
在C中,如右圖的四棱錐,底面是矩形,一條側棱垂直底面,
那么它的四個側面都是直角三角形,故C正確;
在D中,用一個平行于底面的平面去截棱錐,得到兩個幾何體,一個是棱錐,一個是棱臺.故D錯誤.
故選:C.
【考點精析】根據(jù)題目的已知條件,利用平面的基本性質及推論的相關知識可以得到問題的答案,需要掌握如果一條直線上的兩點在一個平面內,那么這條直線在此平面內;過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點分別為F1 , F2 , 且F1 , F2與短軸的一個頂點Q構成一個等腰直角三角形,點P( , )在橢圓C上.
(I)求橢圓C的標準方程;
(Ⅱ)過F2作互相垂直的兩直線AB,CD分別交橢圓于點A,B,C,D,且M,N分別是弦AB,CD的中點,求△MNF2面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,且AC與BD所成的角為60°,則四邊形EFGH的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:mx﹣y=0,l2:x+my﹣m﹣2=0.
(1)求證:對m∈R,l1與l2的交點P在一個定圓上;
(2)若l1與定圓的另一個交點為P1 , l2與定圓的另一個交點為P2 , 求當m在實數(shù)范圍內取值時,△PP1P2的面積的最大值及對應的m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y﹣29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為8,高為4的等腰三角形,側視圖(或稱左視圖)是一個底邊長為6,高為4的等腰三角形.
(Ⅰ)求該幾何體的體積V;
(Ⅱ)求該幾何體的面積S.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中直線的傾斜角為,且經(jīng)過點,以坐標系的原點為極點, 軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點,過點的直線與曲線相交于兩點,且.
(1)平面直角坐標系中,求直線的一般方程和曲線的標準方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)、兩種產(chǎn)品,且產(chǎn)品的質量用質量指標來衡量,質量指標越大表明產(chǎn)品質量越好.現(xiàn)按質量指標劃分:質量指標大于或等于82為一等品,質量指標小于82為二等品.現(xiàn)隨機抽取這兩種產(chǎn)品各100件進行檢測,檢測結果統(tǒng)計如表:
測試指標 | |||||
產(chǎn)品 | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)請估計產(chǎn)品的一等獎;
(Ⅱ)已知每件產(chǎn)品的利潤(單位:元)與質量指標值的關系式為:
已知每件產(chǎn)品的利潤(單位:元)與質量指標值的關系式為:
(i)分別估計生產(chǎn)一件產(chǎn)品,一件產(chǎn)品的利潤大于0的概率;
(ii)請問生產(chǎn)產(chǎn)品, 產(chǎn)品各100件,哪一種產(chǎn)品的平均利潤比較高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com