設(shè)a=log0.50.7,b=log1.40.8,c=1.40.8,則a、b、c由小到大的順序是
 
考點(diǎn):對(duì)數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由y=log0.6x是減函數(shù),知a的范圍;由y=log1.4x是增函數(shù),知b范圍;由y=1.4x是增函數(shù),知c的范圍,由此能比較a、b、c的大。
解答: 解:∵y=log0.5x是減函數(shù),
∴1=log050.5>a=log0.50.7>log0.51=0;
∵y=log1.4x是增函數(shù),
∴b=log1.40.8<log1.41=0;
∵y=1.4x是增函數(shù),
∴c=1.40.8>1.40=1,
∴b<a<c.
故答案為:b<a<c.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖程序框圖,如果輸出的函數(shù)值在區(qū)間(
1
9
,
1
3
)
內(nèi),那么輸入實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在區(qū)域M={(x,y)||x|+|y|≤2},雙曲線
x2
4
-y2=1的兩條漸近線將平面分成四部分,其中焦點(diǎn)所在的兩部分區(qū)域記作N,在區(qū)域M內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在區(qū)域N內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l垂直平面a,垂足為O,在矩形ABCD中AD=1,AB=2,若點(diǎn)A在l上移動(dòng),點(diǎn)B在平面a上移動(dòng),則O、D兩點(diǎn)間的最大距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一臺(tái)還可以用的機(jī)器由于使用的時(shí)間較長(zhǎng),它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)械零件有一些會(huì)有缺陷,每小時(shí)生產(chǎn)有缺陷零件的多少隨機(jī)器運(yùn)轉(zhuǎn)的速率而變化,下表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有缺陷的零件數(shù)y(件)11985
(1)畫出散點(diǎn)圖;    (2)如果y與x有線性相關(guān)的關(guān)系,求回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺陷的零件最多為10個(gè),那么機(jī)器的轉(zhuǎn)運(yùn)速度應(yīng)控制在什么范圍內(nèi)?
參考公式:線性回歸方程系數(shù)公式開(kāi)始
b
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log3(2x-3x2).
(1)求f(x)的值域;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行六面體ABCD-A1B1C1D1的所有棱長(zhǎng)都是1,∠BAD=∠BAA1=∠DAA1=60°,O為A1C1中點(diǎn),記
AB
=
a
,
AD
=
b
,
AA1
=
c

(1)用向量
a
b
,
c
表示向量
AO
;
(2)求|
AO
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)y<0時(shí),x的取值范圍是x<-2或x>3,則二次函數(shù)的解析式是( 。
A、y=x2-x-6
B、y=x2+x-5
C、y=-x2+x+6
D、y=-2x2+3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足2x>4的x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案