9.已知函數(shù)f(x)=x2+bx+c在x=-1處取得極值-1,那么f(x)=( 。
A.x2-2x-4B.x2+x-1C.x2+2xD.x2-2

分析 求出f′(x)=2x+b,由函數(shù)f(x)=x2+bx+c在x=-1處取得極值-1,利用導(dǎo)數(shù)性質(zhì)列出方程組,能求出f(x).

解答 解:∵函數(shù)f(x)=x2+bx+c,
∴f′(x)=2x+b,
∵函數(shù)f(x)=x2+bx+c在x=-1處取得極值-1,
∴$\left\{\begin{array}{l}{f(-1)=1-b+c=-1}\\{{f}^{'}(-1)=-2+b=0}\end{array}\right.$,
解得b=2,c=0,
∴f(x)=x2+2x.
故選:C.

點(diǎn)評 本題考查導(dǎo)數(shù)及其應(yīng)用、不等式、函數(shù)等基礎(chǔ)知識,考查考查推理論證能力、運(yùn)算求解能力、抽象概括能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想、分類與整合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=ex-ax2,g(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)求g(x)的極值;
(Ⅱ)若f(x)≥x+(1-x)•ex在x≥0時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國古代數(shù)學(xué)名著《九章算術(shù)》中有:“今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?”羨除即三個(gè)面是等腰梯形、兩側(cè)面是三角形的五面梯形ABCDEF隧道(如圖),其中,等腰梯形ABCD的下、上底邊長分別為6尺和1丈,高為3尺,平面ABCD⊥平面ABFE,等腰梯形ABFE的上底邊長為8尺,高為7尺,則得到此“羨除”的容積( 。
A.約84立方尺B.約為105立方尺C.恰為84立方尺D.恰為105立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓O:x2+y2=1交x軸正半軸于點(diǎn)A,在圓O上隨機(jī)取一點(diǎn)B,則使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{m}$=(a,1-b),$\overrightarrow{n}$=(b,1)(a>0,b>0),若$\overrightarrow{m}⊥\overrightarrow{n}$,則$\frac{1}{a}$+4b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-2x2-4x.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a42-(a1+a32的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合A={x|3x+2>0},B={x|$\frac{x+1}{x-3}$<0},則A∩B=(  )
A.(-1,+∞)B.(-1,-$\frac{2}{3}$)C.(3,+∞)D.(-$\frac{2}{3}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等差數(shù)列{an}中,a1+a4+a7=$\frac{5}{4}π$,那么cos(a3+a5)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案