10.如果(1-2x)7=a0+a1x+a2x2+…+a7x7
(1)求a0
(2)那么a0+a1+a2+…+a7的值等于多少.

分析 (1)在所給的等式中,令x=0,可得a0的值.
(2)在所給的等式中,令x=1,可得a0+a1+a2+…+a7的值.

解答 解:(1)∵(1-2x)7=a0+a1x+a2x2+…+a7x7 ,令x=0,可得a0=1.
(2)在等式(1-2x)7=a0+a1x+a2x2+…+a7x7 中,令x=1,
可得a0+a1+a2+…+a7=-1.

點評 本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C過P(2,6),Q(-2,2)兩點,且圓心C在直線3x+y=0上.
(1)求圓C的方程.
(2)若直線l過點P(0,5)且被圓C截得的線段長為4$\sqrt{3}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{{e^x}-a}}{x}({x∈R})$.
(1)若函數(shù)f(x)在x=1時取得極值,求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實數(shù)x,y滿足條件$\left\{\begin{array}{l}{y≤x}\\{3y≥x}\\{x+y≤4}\end{array}\right.$,且z=-2x+y,則z的最小值是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知ω>0,在函數(shù)y=sinωx與y=cosωx的圖象的交點中,相鄰兩個交點的橫坐標(biāo)之差的絕對值為2,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從集合{1,2,3,4}中任取2個不同的數(shù),則取出2個數(shù)是2的倍數(shù)的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的圖象與直線y=1的交點中,相鄰兩個交點距離的最小值為$\frac{π}{3}$,且$f(x)≤f({\frac{π}{12}})$對任意實數(shù)x恒成立,則φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對于無窮數(shù)列{xn}和函數(shù)f(x),若xn+1=f(xn)(n∈N+),則稱f(x)是數(shù)列{xn}的母函數(shù).
(Ⅰ)定義在R上的函數(shù)g(x)滿足:對任意α,β∈R,都有g(shù)(αβ)=αg(β)+βg(α),且$g({\frac{1}{2}})=1$;又?jǐn)?shù)列{an}滿足${a_n}=g({\frac{1}{2^n}})$.
(1)求證:f(x)=x+2是數(shù)列{2nan}的母函數(shù);
(2)求數(shù)列{an}的前項n和Sn
(Ⅱ)已知$f(x)=\frac{2016x+2}{x+2017}$是數(shù)列{bn}的母函數(shù),且b1=2.若數(shù)列$\left\{{\frac{{{b_n}-1}}{{{b_n}+2}}}\right\}$的前n項和為Tn,求證:$25({1-{{0.99}^n}})<{T_n}<250({1-{{0.999}^n}})({n≥2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案