(本小題滿分12分)在四邊形ABCD中, BD是它的一條對角線,且,
.⑴若△BCD是直角三形,求的值;⑵在⑴的條件下,求
(Ⅰ)(Ⅱ)-3
(Ⅰ),在中,由余弦定理,得,∴,(2分)由,, 由得,,

,從而 (4分)
由題意可知,∴, (5分)
又∵△BCD,∴當(dāng)時(shí),則,由,
;當(dāng)時(shí),則,由,∴
綜上,.(7分)
(Ⅱ)由(1)知,∴向量的夾角為,    (9分)
當(dāng)時(shí),,,
(10分)
當(dāng)時(shí),,,
(12分)
評析:本題考查平面向量和解三角形的基礎(chǔ)知識(shí),考查分類討論的思想方法.求解時(shí)容易發(fā)生的錯(cuò)誤是:(1)將條件“△BCD是直角三形”當(dāng)作“△BCD是以角是直角三形”來解,忽略對為直角的情況的討論;(2)在計(jì)算時(shí),將當(dāng)作向量的夾角,忽略了確定兩個(gè)向量的夾角時(shí)必須將它們的起點(diǎn)移到一起.暴露出思維的不嚴(yán)謹(jǐn)和概念理解的缺陷,在復(fù)習(xí)中要引起重視,加強(qiáng)訓(xùn)練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知|a|=3,|b|=5,如果a∥b,則a·b="                           "
A.B.C.D.以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知,,.是否存在實(shí)數(shù),使得.若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把函數(shù)y=2x2-4x+5的圖象按向量a平移后,得到y=2x2的圖象,且ab,,b·c=4,則b=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線ax+by+c=0與圓O:x2+y2=1相交于A,B兩點(diǎn),且|AB|=
3
,則
OA
OB
的值是( 。
A.-
1
2
B.
1
2
C.-
3
4
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線ax+by+c=0與圓:x2+y2=1相交于A、B兩點(diǎn),且|
AB
|=
3
,則
OA
OB
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C的圓心在直線3x-y=0上且在第一象限,圓C與x軸相切,且被直線x-y=0截得的弦長為2
7

(1)求圓C的方程;
(2)若點(diǎn)P(x,y)是圓C上的點(diǎn),滿足
3
x+y-m≤0
恒成立,求m的取值范圍;
(3)將圓C向左移1個(gè)單位,再向下平移3個(gè)單位得到圓C1,P為圓C1上第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P作圓C1的切線l,且l交x軸于點(diǎn)A,交y軸于點(diǎn)B,設(shè)
OM
=
OA
+
OB
,求丨
OM
丨的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四邊形是等腰梯形,、分別是腰的中點(diǎn),、是線段上的兩個(gè)點(diǎn),且,下底是上底的2倍,若,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知分別是雙曲線的左、右焦點(diǎn),過斜率為的直線交雙曲線的左、右兩支分別于兩點(diǎn),過且與垂直的直線交雙曲線的左、右兩支分別于兩點(diǎn)。
(1)求的取值范圍;
求四邊形面積的最小值。

查看答案和解析>>

同步練習(xí)冊答案