14.從某學(xué)校對高二學(xué)生做的一項(xiàng)調(diào)查中發(fā)現(xiàn):在平時(shí)的模擬考試中,性格內(nèi)向的學(xué)生42人中有32人在考前心情緊張,性格外向的學(xué)生58人中有28人在考試前心情緊張.根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表,做出等高條形圖,并利用K2檢驗(yàn)的方法,判斷能在犯錯(cuò)誤的概率不超過多少的前提下認(rèn)為考前心情緊張與性格類型有關(guān).
P(K2>k00.500.100.050.010.001
k00.4552.7063.8416.63510.828

分析 作出等高條形圖,建立一個(gè)2×2列聯(lián)表,把數(shù)據(jù)代入公式,求出觀測值,把觀測值同臨界值進(jìn)行比較,得到結(jié)論.

解答 解:等高條形圖,如圖所示,
2×2列聯(lián)表

心情緊張心情不緊張總計(jì)
性格內(nèi)向321042
性格外向283058
總計(jì)6040100
∴K2=$\frac{100(32×30-28×10)^{2}}{60×40×42×58}$≈7.09>6.635,
∴在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為考前心情緊張與性格類型有關(guān).

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,解題的關(guān)鍵是利用數(shù)據(jù)正確的計(jì)算出觀測值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$的圖象,可將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑為20mm,中間有邊長為5mm的正方形小孔,隨機(jī)向銅錢上滴一滴油(油滴大小忽略不計(jì)),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.隨著互聯(lián)網(wǎng)經(jīng)濟(jì)逐步被人們接受,網(wǎng)上購物的人群越來越多,網(wǎng)上交易額也逐年增加,某地一建設(shè)銀行連續(xù)五年的網(wǎng)銀交易額統(tǒng)計(jì)表,如表所示:
年份x20122013201420152016
網(wǎng)上交易額y(億元)567810
經(jīng)研究發(fā)現(xiàn),年份與網(wǎng)銀交易額之間呈線性相關(guān)關(guān)系,為了計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,t=x-2011,z=y-5,得到如表:
時(shí)間代號t12345
z01235
(1)求z關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;
(3)用所求回歸方程預(yù)測到2020年年底,該地網(wǎng)銀交易額可達(dá)多少?
(附:在線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求證:f(x)在(0,+∞)上為增函數(shù);
(2)若不等式f(x)≥0的解集為[1,+∞),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|1≤x<3},B={x|x2≥4},則A∩(∁RB)=( 。
A.{x|1≤x<2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐S-ABCD中,底面ABCD是邊長為4的正方形,平面SAD⊥平面SCD,$SA=SD=2\sqrt{2}$.
(1)求證:平面SAD⊥平面ABCD;
(2)E為線段DS上一點(diǎn),若二面角S-BC-E的平面角與二面角D-BC-E的平面角大小相等,求SE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知2a=3,log35=b,則log1520=$\frac{2+ab}{a+ab}$(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.“直線與拋物線相切”是“直線與拋物線只有一個(gè)公共點(diǎn)”的( 。l件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

同步練習(xí)冊答案