已知數(shù)列{an}為等差數(shù)列,Sn為其前n項和,若S7=7,S15=75,
(1)求數(shù)列{an}的首項和公差;
(2)求數(shù)列{
Sn
n
}
的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件,利用等差數(shù)列前n項和公式列出方程組能求出數(shù)列{an}的首項和公差.
(2)由數(shù)列{an}的首項和公差,利用等差數(shù)列的前n項和公式,能推導出
Sn
n
=
n-5
2
,由此利用分組求和法能求出Tn
解答: 解:(1)∵數(shù)列{an}為等差數(shù)列,Sn為其前n項和,S7=7,S15=75,
設數(shù)列的公差為d,
7a1+
7×6
2
d=7
15a1+
15×14
2
d=75
,
解得a1=-2,d=1.
(2)∵a1=-2,d=1.
Sn=-2n+
n(n-1)
2
×1
=
n2-5n
2
,
Sn
n
=
n-5
2
,
∴Tn=
1
2
(1+2+3+…+n)-
5
2
×n

=
1
2
×
n(n+1)
2
-
5n
2

=
1
4
n2-
9
4
n
點評:本題考查等差數(shù)列的首項和公差的求法,考查數(shù)列前n項和的求法,是中檔題,解題時要注意分組求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F(xiàn)分別為AD,CD的中點.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1+a•2x
2x+1
 是奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并給出證明過程;
(3)若函數(shù)f(x)的圖象經(jīng)過點(-1,-
1
3
)
,這對任意x∈R不等式f(x2-2mx+m+1)≤
1
3
恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,PA=AB=
6
,點E是棱PB的中點.
(Ⅰ)求證:直線AD∥平面PBC;
(Ⅱ) 求直線AD與平面PBC的距離;
(Ⅲ)若AD=3,求二面角A-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=45°,四邊形BCC1B1為矩形,若AC=5,AB=4,BC=3
(1)求證:AB1⊥面A1BC;
(2)求二面角C-AA1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中點,四面體P-BCG的體積為
8
3

(1)求二面角P-BC-D的正切值;
(2)求直線DP到平面PBG所成角的正弦值;
(3)在棱PC上是否存在一點F,使異面直線DF與GC所成的角為60°,若存在,確定點F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
mx2+8x+n
x2+1
定義域為(-∞,+∞),值域為[1,9],求m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB.
(Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三棱柱ABC-A′B′C′中,D是BC的中點,AA′=AB=2
(1)求證:A′C∥平面AB′D;
(2)求二面角D一AB′一B的余弦值.

查看答案和解析>>

同步練習冊答案