如圖,正三棱柱ABC-A′B′C′中,D是BC的中點,AA′=AB=2
(1)求證:A′C∥平面AB′D;
(2)求二面角D一AB′一B的余弦值.
考點:與二面角有關(guān)的立體幾何綜合題,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)A′B,交AB′于O,連結(jié)OD,在△A′BC中,OD是中位線,由此能證明A′C∥平面AB′D.
(2)過D作FD⊥AB于F,作FE⊥AB′于E,連結(jié)DE,則∠DEF為二面角D-AB′-B的平面角,由此能求出二面角D一AB′一B的余弦值.
解答: (1)證明:連結(jié)A′B,交AB′于O,連結(jié)OD,
在△A′BC中,∵OD是中位線,
∴OD∥A′C,
∵OD?平面AB′D,A′C不包含于平面AB′D,
∴A′C∥平面AB′D.
(2)解:正三棱柱ABC-A′B′C′中,
面BB′A′A⊥面ABC,過D作FD⊥AB于F,作FE⊥AB′于E,
連結(jié)DE,則∠DEF為二面角D-AB′-B的平面角,
∵D是BC的中點,AA′=AB=2,
∴AD=
4-1
=
3
,DB′=
4+1
=
5
,AB′=
4+4
=2
2

∴DE=
AD•DB
AB
=
3
5
2
2
=
30
4
,
EF=
3BO
4
=
3
2
4

∴cos∠DEF=
EF
ED
=
3
2
4
30
4
=
15
5
,
∴二面角D一AB′一B的余弦值為
15
5
點評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn為其前n項和,若S7=7,S15=75,
(1)求數(shù)列{an}的首項和公差;
(2)求數(shù)列{
Sn
n
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,四邊形AA1C1C也為菱形且∠A1AC=∠DAB=60°,平面AA1C1C⊥平面ABCD.
(Ⅰ)證明:BD⊥AA1
(Ⅱ)證明:平面AB1C∥平面DA1C1;
(Ⅲ)在棱CC1上是否存在點P,使得平面PDA1和平面DA1C1所成銳二面角的余弦值為
30
31
?若存在,求出點P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C滿足到直線x=-
p
2
的距離與到點A(
p
2
,0)的最小距離相等,p>0,直線l交此曲線于不同的兩個點A(x1,y1)B(x2,y2).
(1)求曲線C的軌跡方程;
(2)當(dāng)直線L過M(-p,0),證y1y2是定值;
(3)當(dāng)y1y2=-p時直線l是否過定點,若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個側(cè)面都是等邊三角形,AC與BD的交點為O,E為側(cè)棱SC的中點.
(1)求證:平面SA∥平面BDE;
(2)平面BDE⊥平面SAC;
(3)求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+cos2x+1(x∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-
π
4
,
π
4
]上的最小值,并寫出f(x)取最小值時相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD與梯形CDEF所在的平面互相垂直,CD⊥DE,CF∥DE,CD=CF=2,DE=4,G為AE的中點.
(Ⅰ)求證:FG∥平面ABCD;
(Ⅱ)求證:平面FAD⊥平面FAE;
(Ⅲ)求平面FAE與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與拋物線y2=
2
3
bx
有一個公共交點為(3,
2
)
,則此雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線x2+y2=9上各點的橫坐標保持不變,縱坐標縮短為原來的一半,則所得曲線方程是
 

查看答案和解析>>

同步練習(xí)冊答案