4.極坐標(biāo)系中,A,B分別是直線ρcosθ-ρsinθ+5=0和圓ρ=2sinθ上的動點,則A,B兩點之間距離的最小值是(  )
A.2B.3C.2$\sqrt{2}$-1D.4

分析 把極坐標(biāo)方程化為直角坐標(biāo)方程,求出圓心到直線的距離d,進(jìn)而得出最小距離=d-r.

解答 解:由ρcosθ-ρsinθ+5=0化為直角坐標(biāo)方程:x-y+5=0,
ρ=2sinθ即ρ2=2ρsinθ,化為直角坐標(biāo)方程:x2+y2=2y,
配方為:x2+(y-1)2=1,圓心C(0,1),半徑r=1.
圓心C到直線的距離d=$\frac{|0-1+5|}{\sqrt{2}}$=2$\sqrt{2}$>1,
∴A,B兩點之間距離的最小值=d-r=2$\sqrt{2}$-1.
故選:C.

點評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、圓的標(biāo)準(zhǔn)方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{4}{3}$B.1C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式(x+1)3(x-2)2(3-x)>0的解集(-1,2)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=-2+i,i是虛數(shù)單位,則z在復(fù)平面內(nèi)對應(yīng)的點在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“2<x<3”是“x<3”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若對可導(dǎo)函數(shù)f(x),恒有f(x)+xf'(x)>0,則f(x)( 。
A.恒大于0B.恒小于0
C.恒等于0D.和0的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=f(x)周期函數(shù)且T=4,當(dāng)x∈[-4,0)時,f(x)=x2-1,則f(2015)=( 。
A.8B.-1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為( 。
A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.學(xué)校擬進(jìn)行一次活動,對此,新聞媒體進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“保留”和“不支持”態(tài)度的人數(shù)如表所示
支持保留不支持
20歲以下800450200
20歲以上(含20歲)100150300
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從持“不支持”態(tài)度的人中抽取了25人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個總體,從這5人中任意選取2人,求至少有1人年齡在20歲以上的概率;
(Ⅲ)在接受調(diào)查的人中,有8人給這項活動打出的分?jǐn)?shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8個人打出的分?jǐn)?shù)看作一個總體,從中任取1個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.

查看答案和解析>>

同步練習(xí)冊答案