【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側(cè)視圖中的的值為 ( )

A. 6 B. 4 C. 3 D. 2

【答案】C

【解析】分析:首先通過觀察幾何體的三視圖,還原幾何體,得知其為一個正三棱柱,結(jié)合直三棱柱的外接球的球心在上下底面外心連線的中點處,利用外接球的表面積,得到底面邊長所滿足的關系式,求得其邊長,再根據(jù)側(cè)視圖中對應的邊長與底面邊長的關系,求得結(jié)果.

詳解根據(jù)題中所給的幾何體的三視圖,可以得到該幾何體是一個正三棱柱,

設其底面邊長為,則底面正三角形的外接圓的半徑為,

設該三棱錐的外接球的半徑為R,

結(jié)合正三棱錐的外接球的球心在上下底面的外心連線的中點處,

則有,因為該三棱柱的外接球的表面積為,

則有,從而解得,

因為側(cè)視圖中對應的邊為底面三角形的邊的中線

求得,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】蘇格蘭數(shù)學家納皮爾發(fā)明了對數(shù)表,這一發(fā)明為當時的天文學家處理“大數(shù)運算”做出了巨大貢獻法國著名數(shù)學家和天文學家拉普拉斯曾說過:“對數(shù)倍增了天文學家的壽命”比如在下面的部分對數(shù)表中,16,256對應的冪指數(shù)分別為4,8,冪指數(shù)和為12,而12對應的冪4096,因此根據(jù)此表,推算( )

x

1

2

3

4

5

6

7

8

9

10

2

4

8

16

32

64

128

256

512

1024

x

11

12

13

14

15

16

17

18

19

20

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

x

21

22

23

24

25

2097152

4194304

8388608

16777216

33554432

A. 524288 B. 8388608 C. 16777216 D. 33554432

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段軸的交點滿足

(Ⅰ)求橢圓的標準方程;

(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點,當,且滿足時,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)),函數(shù),(為常數(shù),且).

(1)若函數(shù)有且只有1個零點,求的取值的集合.

(2)當(1)中的取最大值時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟作物(下簡稱 作物)的生長狀況,用簡單隨機抽樣方法從該市調(diào)查了 500 處 作物種植點,其生長狀況如表:

其中生長指數(shù)的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.

(1)估計該市空氣質(zhì)量差的作物種植點中,不絕收的種植點所占的比例;

(2)能否有 99%的把握認為“該市作物的種植點是否絕收與所在地域有關”?

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該市作物的種植點中,絕收種植點的比例?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)角度看,可以看成是以為自變量的函數(shù),其定義域是.

1)證明:

2)試利用1的結(jié)論來證明:當為偶數(shù)時,的展開式最中間一項的二項式系數(shù)最大;當為奇數(shù)時的展開式最中間兩項的二項式系數(shù)相等且最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在集合中,任取個元素構(gòu)成集合. 若的所有元素之和為偶數(shù),則稱的偶子集,其個數(shù)記為;若的所有元素之和為奇數(shù),則稱的奇子集,其個數(shù)記為. 令

(1)當 時,求的值;

(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,圓軸的一個交點為,圓的圓心為,為等邊三角形.

求拋物線的方程;

設圓與拋物線交于兩點,點為拋物線上介于兩點之間的一點,設拋物線在點處的切線與圓交于兩點,在圓上是否存在點,使得直線均為拋物線的切線,若存在求出點坐標(用表示);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)),M上的動點,P點滿足,點P的軌跡為曲線

I)求的方程;

II)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|

查看答案和解析>>

同步練習冊答案