(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
(1)連交于點,連.
由是的中點,是的中點,得到,推出∥平面.
(2) .
解析試題分析:(1)證明:連交于點,連.
則是的中點,
∵是的中點,∴
∵平面,平面,∴∥平面.
(2)法一:設,∵,∴,且,
作,連
∵平面⊥平面,∴平面,
∴∴就是二面角的平面角,
在中,,
在中,
,即二面角的余弦值是.…………12分
解法二:如圖,建立空間直角坐標系.
則,,,.
∴,,,
設平面的法向量是,則
由,取
設平面的法向量是,則
由,取
記二面角的大小是,則,
即二面角的余弦值是.
考點:本題主要考查立體幾何中的平行關系,角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,應用空間向量,使問題解答得以簡化。本解答提供了兩種解法,相互對比,各有優(yōu)點。
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四邊形中,對角線于,,為的重心,過點的直線分別交于且‖,沿將折起,沿將折起,正好重合于.
(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=,E、F分別是AC、AD上的動點,且
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知⊙所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。
(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱⊥BD,點F為的中點.
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com