A. | 直線$θ=\frac{π}{6}$對稱 | B. | 直線θ=$\frac{5}{6}$π對稱 | C. | 點$(2,\frac{π}{3})$中心對稱 | D. | 極點中心對稱 |
分析 先將原極坐標方程兩邊同乘以ρ后化成直角坐標方程,再利用直角坐標方程進行求解.
解答 解:曲線ρ=4cos(θ-$\frac{π}{3}$)即 ρ2=2ρcosθ+2$\sqrt{3}$ρsinθ,
化為直角坐標方程為 (x-1)2+(y-$\sqrt{3}$)2=4,表示以(1,$\sqrt{3}$)為圓心,半徑等于2的圓,
∴曲線ρ=4cos(θ-$\frac{π}{3}$)關(guān)于點$(2,\frac{π}{3})$中心對稱.
故選C.
點評 本題考查點的極坐標和直角坐標的互化,利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com