精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=lnx-
1
2
ax2-2x+1,a∈R
(Ⅰ)若f(x)在x=2處的切線與直線2x+y=0垂直,求a的值;
(Ⅱ)若f(x)存在單調遞減區(qū)間,求a的取值范圍.
考點:利用導數研究函數的單調性,利用導數研究曲線上某點切線方程
專題:導數的綜合應用
分析:(Ⅰ)求函數的導數,根據導數的幾何意義,建立條件故選即可求出a的值;
(Ⅱ)根據函數單調性和導數之間的故選即可求出a的取值范圍.
解答: 解:(Ⅰ)直線2x+y=0的斜率k=-2,
若f(x)在x=2處的切線與直線2x+y=0垂直,
則f′(2)=
1
2

∵f(x)=lnx-
1
2
ax2-2x+1,
∴f′(x)=
1
x
-ax-2,
則f′(2)=
1
2
-2a-2=
1
2
,
解得a=-1;
(Ⅱ)若f(x)存在單調遞減區(qū)間,
即f′(x)=
1
x
-ax-2<0在(0,+∞)上有解,
1
x
-2<ax,則a>
1-2x
x2
,
設g(x)=
1-2x
x2
,則g(x)=(
1
x
2-2•
1
x
=(
1
x
-1)2-1≥-1,
則a>-1.
點評:本題主要考查導數的幾何意義,以及函數單調性和導數之間關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(1,
2
2
),離心率為
2
2
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設直線PF1、PF2的斜線分別為k1、k2.證明:
1
k1
-
3
k2
=2.

查看答案和解析>>

科目:高中數學 來源: 題型:

求下列函數的導函數:
①f(x)=x3+log2x;
②f(x)=
cosx
ex

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點A(2,3),且離心率e=
1
2

(1)求橢圓C的標準方程;
(2)是否存在過點B(0,-4)的直線l交橢圓于不同的兩點M、N,且滿足
OM
ON
=
16
7
(其中點O為坐標原點),若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

寫出圓心為C(1,-2),半徑r=3的圓的方程,并判斷點M(4,-2)、N(1,0)、P(5,1)與圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1
3
x3-
1
2
(a+1)x2+ax+1
,a∈R.若函數f(x)在區(qū)間(-1,1)內是減函數,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓和雙曲線還可以由下面的方式定義:平面內到定點的距離和定直線(定點在定直線外)的距離的比為常數的點的集合.這里定點就是焦點,定直線就是與焦點相對應的準線,比如橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的準線方程為x=±
a2
c
(c為半焦距),雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的準線方程為x=±
a2
c
(c為半焦距)這里的常數就是其離心率e.現在設橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的左焦點為F,過F的直線與橢圓相交于A、B兩點,那么以弦AB為直徑的圓與左準線的位置關系應該是
 
,那么類比到雙曲線中結論是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行15km后,看見燈塔在正西方向,則這時船與燈塔的距離是
 
km.

查看答案和解析>>

同步練習冊答案