已知曲線,求曲線過點的切線方程。
 

試題分析:因為點不在曲線上,故先設(shè)所求切線的切點為,再求的導(dǎo)數(shù),由點斜式寫出所求切線方程,再將切線上的已知點代入切線方程可求出,從而所求出切線方程.
試題解析:  ,點不在曲線上,設(shè)所求切線的切點為,則切線的斜率,
故所求的切線方程為.
代入上式得
解得:所以切點為.
從而所求切線方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,過點P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=.

(Ⅰ)求點S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的橫坐標(biāo)為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-5,0),B(5,0),動點P滿足||,|,8成等差數(shù)列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足||·||=,則稱點M為點P對應(yīng)的“比例點”.問:對任意一個確定的點P,它總能對應(yīng)幾個“比例點”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等邊中,若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線和⊙O∶相離,則過點的直線與橢圓的交點個數(shù)為(    )
A.至多一個B. 2個C. 1個   D.0個

查看答案和解析>>

同步練習(xí)冊答案