已知曲線
,求曲線過點
的切線方程。
試題分析:因為點
不在曲線上,故先設(shè)所求切線的切點為
,再求
的導(dǎo)數(shù)
則
,由點斜式寫出所求切線方程
,再將切線上的已知點
代入切線方程可求出
,從而所求出切線方程.
試題解析:
,點
不在曲線上,設(shè)所求切線的切點為
,則切線的斜率
,
故所求的切線方程為
.
將
及
代入上式得
解得:
所以切點為
或
.
從而所求切線方程為
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓的中心在原點,焦點在x軸上,離心率為
,且經(jīng)過點
,直線
交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線
不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點P(4,0)且不垂直于x軸直線
與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求
的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點F是拋物線C:
的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=
.
(Ⅰ)求點S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與
軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交
軸于點E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點. ①若線段
中點的橫坐標(biāo)為
,求斜率
的值;②若點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知A(-5,0),B(5,0),動點P滿足|
|,
|
|,8成等差數(shù)列.
(1)求P點的軌跡方程;
(2)對于x軸上的點M,若滿足|
|·|
|=
,則稱點M為點P對應(yīng)的“比例點”.問:對任意一個確定的點P,它總能對應(yīng)幾個“比例點”?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足
,其中k
1、k
2分別表示直線AP、BP的斜率.
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在等邊
中,若以
為焦點的橢圓經(jīng)過點
,則該橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線
和⊙O∶
相離,則過點
的直線與橢圓
的交點個數(shù)為( )
查看答案和解析>>