直線3x+4y-13=0與圓(x-1)2+(y+2)2=1的位置關(guān)系是( 。
A、相離B、相交
C、相切D、無(wú)法判定
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:由圓的方程找出圓心坐標(biāo)和圓的半徑r,然后利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,發(fā)現(xiàn)d>r,故直線與圓相離.
解答: 解:由圓的方程得到:圓心坐標(biāo)為(1,-2),半徑r=1,
所以圓心到直線3x+4y-13=0的距離d=
|3-8-13|
5
=3.6=>1=r,
則直線與圓的位置關(guān)系為相離.
故選A.
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,以及點(diǎn)到直線的距離公式.其中直線與圓的位置關(guān)系的判定方法為:當(dāng)0≤d<r時(shí),直線與圓相交;當(dāng)d=r時(shí),直線與圓相切;當(dāng)d>r時(shí),直線與圓相離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我校在2014年11月9日上午隆重舉行建90周年校慶祝大會(huì),有5位過(guò)去同班親密的老校友,因?yàn)楫厴I(yè)后多年不相見(jiàn),他們先通過(guò)電話聯(lián)系,每人各自帶來(lái)1張自己家庭合影相片,利用校慶祝大會(huì)相聚談?wù)劯髯约彝サ那闆r,會(huì)后離別時(shí),為了作為紀(jì)念,每人又帶回1張不是自己家庭合影相片,則所有不同帶法共有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-ex(a∈R,e為自然對(duì)數(shù)的底數(shù)),f′(x)是f(x)的導(dǎo)函數(shù).
(1)解關(guān)于x的不等式:f(x)>f′(x);
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M(2,3)、N(2,-3)兩點(diǎn)在以F(2,0)為右焦點(diǎn)的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上,斜率為1的直線l與橢圓C交于點(diǎn)A,B(A,B在直線MN的兩側(cè)).
(I)求橢圓C的方程;
(Ⅱ)求四邊形ANBM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,∠A=90°,AB=2,AC=1,設(shè)點(diǎn)P,Q滿足
AP
AB
,
AQ
=(1-λ)
AC
,λ∈R.若
BQ
CP
=-2,則λ=( 。
A、
1
3
B、
2
3
C、
4
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是2014年某大學(xué)自主招生面試環(huán)節(jié)中,七位評(píng)委為某考生打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,該數(shù)據(jù)的中位數(shù)和眾數(shù)依次為(  )
A、86,84
B、84,84
C、84,86
D、85,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
則z=x-2y的最小值是( 。
A、0
B、-
3
2
C、-2
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若向量
m
=(2b-c,a),
n
=(cosA,-cosC)且
m
n

(1)求角A的大;
(2)若a=
3
,S△ABC=
3
3
4
,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x|2x-a|(a>0)在區(qū)間[2,4]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案